Download citation
Download citation
link to html
In the crystal structure of the title compound, (C8H20N)3[W2(CH3O)2(C3H7O2)(CO)6], obtained from a ligand substitution reaction of (Et4N)3[W2(OMe)3(CO)6], the trianion sits across a mirror plane such that one W(CO)3 group is unique and the two meth­oxy groups and all but the middle C atom of the 3-hydroxy­propanolate ligand lie on the mirror plane. One and a half mol­ecules of the tetra­ethyl­ammonium cation are present to balance the charge in the asymmetric unit. The half mol­ecule is situated with its N atom on a mirror plane and is disordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029041/bv6028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029041/bv6028Isup2.hkl
Contains datablock I

CCDC reference: 287488

Key indicators

  • Single-crystal X-ray study
  • T = 110 K
  • Mean [sigma](C-C) = 0.005 Å
  • H-atom completeness 98%
  • Disorder in main residue
  • R factor = 0.022
  • wR factor = 0.060
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C8
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.31 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.38 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.67 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C7 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C19 PLAT301_ALERT_3_C Main Residue Disorder ......................... 4.00 Perc. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 33.00 Perc. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C8 H20 N PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C11 H11 O10 W2
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C35 H73 N3 O10 W2 Atom count from the _atom_site data: C35 H71 N3 O10 W2 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C35 H73 N3 O10 W2 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 140.00 140.00 0.00 H 292.00 284.00 8.00 N 12.00 12.00 0.00 O 40.00 40.00 0.00 W 8.00 8.00 0.00
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Previously, we have presented the results of ligand exchange of the trianion of (Et4N)3[W2(OMe)3(CO)6], (II), with aryl alcohols (Klausmeyer et al., 2003). Subsequently, we reported the complete exchange reaction with an alcohol containing an sp3 carbon (Klausmeyer & Adrian, 2004). In each of the previous examples, there was always complete exchange of all of the methoxy groups regardless of how much of the new alcohol was added. In the present study, we were able to isolate the first known singly substituted derivative, (Et4N)3[W2(CO)6(OCH2CH2CH2OH)(CO)6], (I).

The trianion sits across a mirror plane such that one W(CO)3 group is unique and the two methoxy groups and all but the middle C atom (C7) of the 3-hydroxypropanolate ligand lie on the mirror plane. This forces the bridging ligands to be symmetric with respect to the W(CO)3 groups.

The environment around the W atom is a distorted octahedral, comprised of three CO ligands and three O atoms from the bridging alkoxy ligands. The W—O bond lengths are all slightly different from each other. For WO(methoxy), the bond lengths average 2.198 (3) Å, and for W—O(diol), the bond length is slightly shorter at 2.1844 (18) Å.

The W—O—W angles are nearly the same, averaging 96.2 (2)°. The bridging O atoms would all be expected to have near tetrahedral geometry, but only the methoxy ligands approach this geometry, with the sum of their angles being 338.8 (2)° for O4 and 343.7 (2)° for O5. The angles around O6 of the 3-hydroxypropanolate ligand sum to 359.98 (17)°, which means it is planar. The planarity of this O atom is likely due to the pendent OH group of the 3-hydroxypropanolate ligand which bends back around toward the metal centers in order to engage in hydrogen bonding with the bridging O atoms, viz. O6 and O5 (Table 2). This would account for the deviation in geometry from the expected values.

Experimental top

Complex (I) was obtained by the ligand-exchange reaction of (Et4N)3[W2(OMe)3(CO)6] with 1 equivalent of 1,3-propanediol. In a typical experiment, (Et4N)3[W2(OMe)3(CO)6] (0.100 g) was dissolved in CH3CN (20 ml) and 1,3-propanediol (1 equivalent) in CH3CN (15 ml) was added. This solution was allowed to stir for 1 h at room temperature. The solvent was then removed at reduced pressure to a final volume of about 5 ml and the complex was precipitated from solution by addition of ether (60 ml), resulting in an oily precipitate. Diffraction quality crystals of (I) were obtained by slow diffusion of ether into a concentrated acetonitrile solution.

Refinement top

One and a half tetraethylammonium cations are present to balance the charge in the asymmetric unit. The half molecule is situated with N2 on a mirror plane and is disordered. Occupancies of the C atoms of the disordered cation were constrained to sum to unity, and one half of the molecule was modeled while the other is symmetry generated. Refinement yielded an 0.51 (1)/0.49 (1) disorder of the C atoms. H atoms were included in calculated positions (C—H = 0.93 Å); isotropic displacement parameters were fixed [Uiso(H) = 1.2Ueq(C)]. The largest electron-density peak is 0.71 Å from atom W1.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level
Tris(tetraethylammonium) µ-3-hydroxypropanolato-di-µ-methoxo-bis[tricarbonyltungsten(0)] top
Crystal data top
(C8H20N)3[W2(CH3O)2(C3H7O2)(CO)6]F(000) = 2120
Mr = 1063.63Dx = 1.686 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6700 reflections
a = 16.9476 (6) Åθ = 2.5–34.5°
b = 24.1286 (9) ŵ = 5.54 mm1
c = 10.2457 (4) ÅT = 110 K
V = 4189.7 (3) Å3Block, orange
Z = 40.26 × 0.15 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5181 independent reflections
Radiation source: fine-focus sealed tube4411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.297, Tmax = 0.485k = 3223
27335 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0293P)2 + 7.8991P]
where P = (Fo2 + 2Fc2)/3
5181 reflections(Δ/σ)max = 0.004
274 parametersΔρmax = 2.55 e Å3
5 restraintsΔρmin = 0.77 e Å3
Crystal data top
(C8H20N)3[W2(CH3O)2(C3H7O2)(CO)6]V = 4189.7 (3) Å3
Mr = 1063.63Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 16.9476 (6) ŵ = 5.54 mm1
b = 24.1286 (9) ÅT = 110 K
c = 10.2457 (4) Å0.26 × 0.15 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5181 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4411 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.485Rint = 0.024
27335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0225 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.02Δρmax = 2.55 e Å3
5181 reflectionsΔρmin = 0.77 e Å3
274 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.120112 (6)0.682331 (4)1.400128 (11)0.02087 (5)
O10.15179 (18)0.59719 (10)1.1764 (2)0.0476 (6)
O20.00686 (13)0.59786 (9)1.4974 (2)0.0351 (5)
O30.24150 (14)0.61157 (10)1.5583 (2)0.0353 (5)
O40.10259 (17)0.75001.5404 (3)0.0220 (6)
O50.19831 (17)0.75001.3367 (3)0.0241 (6)
N10.12964 (15)0.50237 (11)0.8078 (3)0.0286 (5)
C10.13868 (19)0.63054 (13)1.2595 (3)0.0312 (7)
C20.04105 (18)0.63060 (12)1.4595 (3)0.0257 (6)
C30.19455 (17)0.63833 (12)1.4972 (3)0.0261 (6)
C40.1402 (3)0.75001.6612 (4)0.0326 (10)
H4A0.12540.78261.70900.049*0.50
H4B0.19630.75001.64850.049*
C50.2808 (3)0.75001.3546 (5)0.0305 (9)
H5A0.30300.78351.31960.046*0.50
H5B0.29180.75001.44640.046*
O60.05275 (17)0.75001.3127 (3)0.0241 (6)
C60.01112 (16)0.75001.2256 (3)0.0380 (11)
H6A0.03000.78841.21270.046*0.50
H6B0.05500.72801.26270.046*0.50
C70.01377 (16)0.7250 (2)1.0922 (3)0.0393 (16)0.50
H7A0.02590.68531.10550.047*0.50
H7B0.03200.72711.03240.047*0.50
C80.07930 (16)0.75001.0294 (3)0.087 (3)
H8A0.07940.73460.93980.104*0.50
H8B0.06500.78961.02010.104*0.50
O70.15790 (16)0.75001.0679 (3)0.0588 (12)
H70.16050.75261.14960.088*0.50
C90.21424 (19)0.50277 (14)0.7599 (4)0.0361 (7)
H9A0.22380.46820.71030.043*
H9B0.22070.53410.69860.043*
C100.2768 (2)0.50757 (17)0.8650 (4)0.0484 (9)
H10A0.32920.50710.82460.073*
H10B0.27200.47630.92560.073*
H10C0.26960.54240.91280.073*
C110.07718 (19)0.50265 (14)0.6875 (3)0.0336 (7)
H11A0.08950.53620.63570.040*
H11B0.09080.47000.63340.040*
C120.0102 (2)0.50168 (17)0.7132 (4)0.0445 (9)
H12A0.03880.50210.63010.067*
H12B0.02500.53430.76470.067*
H12C0.02390.46800.76170.067*
C130.1131 (2)0.55184 (16)0.8947 (3)0.0381 (8)
H13A0.14780.54970.97220.046*
H13B0.05780.54960.92560.046*
C140.1253 (2)0.60758 (16)0.8293 (4)0.0464 (9)
H14A0.11250.63730.89100.070*
H14B0.09080.61040.75280.070*
H14C0.18050.61110.80180.070*
C150.1139 (2)0.45127 (15)0.8923 (3)0.0344 (7)
H15A0.15080.45170.96710.041*
H15B0.05970.45380.92780.041*
C160.1224 (2)0.39619 (15)0.8209 (4)0.0463 (9)
H16A0.10970.36570.88060.069*
H16B0.17680.39210.78980.069*
H16C0.08620.39530.74630.069*
N20.1305 (2)0.75001.6477 (5)0.0439 (11)0.486 (6)
C170.0956 (6)0.7279 (4)1.5275 (8)0.060 (3)0.486 (6)
H17A0.04560.70851.54740.072*0.486 (6)
H17B0.08410.75851.46590.072*0.486 (6)
C180.1546 (7)0.6877 (5)1.4670 (10)0.067 (3)0.486 (6)
H18A0.13300.67301.38530.100*0.486 (6)
H18B0.20410.70711.44900.100*0.486 (6)
H18C0.16440.65711.52770.100*0.486 (6)
C190.1544 (4)0.7116 (3)1.7505 (7)0.0343 (17)0.486 (6)
H19A0.20310.69201.72340.041*0.486 (6)
H19B0.16620.73261.83110.041*0.486 (6)
C200.0895 (19)0.6690 (14)1.778 (2)0.061 (6)0.486 (6)
H20A0.10730.64361.84700.091*0.486 (6)
H20B0.04170.68831.80760.091*0.486 (6)
H20C0.07790.64801.69890.091*0.486 (6)
N2A0.1305 (2)0.75001.6477 (5)0.0439 (11)0.514 (6)
C17A0.2027 (4)0.7111 (3)1.6167 (6)0.0342 (16)0.514 (6)
H17C0.21650.69121.69810.041*0.514 (6)
H17D0.24810.73501.59440.041*0.514 (6)
C18A0.1946 (6)0.6680 (3)1.5089 (8)0.051 (2)0.514 (6)
H18D0.24430.64751.50020.076*0.514 (6)
H18E0.15200.64221.53090.076*0.514 (6)
H18F0.18240.68661.42630.076*0.514 (6)
C19A0.0633 (4)0.7073 (3)1.7043 (8)0.049 (2)0.514 (6)
H19C0.04740.68211.63270.058*0.514 (6)
H19D0.01630.72921.72890.058*0.514 (6)
C20A0.0868 (17)0.6725 (12)1.820 (2)0.063 (6)0.514 (6)
H20D0.04240.64891.84540.094*0.514 (6)
H20E0.13200.64931.79600.094*0.514 (6)
H20F0.10130.69681.89250.094*0.514 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.02378 (8)0.01818 (7)0.02066 (7)0.00076 (4)0.00007 (4)0.00002 (4)
O10.0757 (19)0.0329 (13)0.0342 (13)0.0012 (13)0.0128 (13)0.0093 (11)
O20.0331 (12)0.0272 (12)0.0451 (13)0.0044 (9)0.0033 (10)0.0035 (10)
O30.0351 (13)0.0338 (12)0.0368 (12)0.0103 (10)0.0031 (10)0.0077 (10)
O40.0266 (15)0.0201 (13)0.0193 (13)0.0000.0012 (11)0.000
O50.0248 (15)0.0227 (14)0.0247 (14)0.0000.0001 (12)0.000
N10.0286 (14)0.0297 (14)0.0276 (12)0.0014 (10)0.0033 (10)0.0057 (11)
C10.0401 (18)0.0261 (15)0.0274 (14)0.0023 (13)0.0068 (13)0.0015 (12)
C20.0274 (15)0.0230 (14)0.0266 (14)0.0049 (11)0.0026 (12)0.0005 (11)
C30.0268 (15)0.0243 (14)0.0273 (13)0.0027 (11)0.0072 (12)0.0009 (12)
C40.036 (2)0.040 (3)0.022 (2)0.0000.0041 (18)0.000
C50.022 (2)0.035 (2)0.035 (2)0.0000.0028 (18)0.000
O60.0250 (15)0.0237 (14)0.0236 (14)0.0000.0048 (12)0.000
C60.031 (2)0.048 (3)0.035 (2)0.0000.009 (2)0.000
C70.048 (4)0.042 (4)0.028 (3)0.004 (3)0.004 (3)0.001 (3)
C80.060 (5)0.170 (9)0.031 (3)0.0000.001 (3)0.000
O70.050 (3)0.092 (3)0.0341 (19)0.0000.0103 (18)0.000
C90.0311 (17)0.0326 (17)0.0447 (19)0.0017 (13)0.0043 (15)0.0073 (15)
C100.035 (2)0.043 (2)0.067 (3)0.0010 (16)0.0100 (18)0.0077 (19)
C110.0333 (18)0.0348 (17)0.0326 (16)0.0044 (13)0.0026 (13)0.0038 (14)
C120.0315 (18)0.047 (2)0.055 (2)0.0012 (15)0.0003 (17)0.0057 (19)
C130.046 (2)0.0340 (18)0.0343 (18)0.0044 (14)0.0075 (15)0.0007 (14)
C140.061 (3)0.0295 (18)0.049 (2)0.0082 (16)0.0085 (18)0.0017 (16)
C150.0347 (18)0.0316 (17)0.0368 (18)0.0026 (13)0.0019 (13)0.0124 (14)
C160.054 (2)0.0292 (18)0.055 (2)0.0041 (15)0.0103 (18)0.0094 (17)
N20.030 (2)0.059 (3)0.043 (2)0.0000.0118 (19)0.000
C170.073 (6)0.071 (6)0.037 (4)0.034 (5)0.016 (4)0.002 (4)
C180.067 (7)0.092 (9)0.042 (5)0.037 (6)0.012 (5)0.014 (5)
C190.030 (4)0.042 (4)0.030 (3)0.002 (3)0.003 (3)0.004 (3)
C200.062 (9)0.066 (9)0.054 (11)0.028 (7)0.012 (8)0.012 (8)
N2A0.030 (2)0.059 (3)0.043 (2)0.0000.0118 (19)0.000
C17A0.030 (4)0.038 (4)0.034 (3)0.009 (3)0.004 (3)0.001 (3)
C18A0.061 (6)0.041 (4)0.050 (5)0.014 (4)0.026 (4)0.016 (4)
C19A0.035 (4)0.055 (5)0.056 (5)0.004 (3)0.004 (4)0.015 (4)
C20A0.051 (8)0.058 (8)0.080 (16)0.008 (6)0.003 (10)0.021 (10)
Geometric parameters (Å, º) top
W1—C31.926 (3)C12—H12B0.9800
W1—C21.930 (3)C12—H12C0.9800
W1—C11.933 (3)C13—C141.517 (5)
W1—O62.1844 (18)C13—H13A0.9900
W1—O42.1952 (19)C13—H13B0.9900
W1—O52.2010 (19)C14—H14A0.9800
O1—C11.193 (4)C14—H14B0.9800
O2—C21.198 (4)C14—H14C0.9800
O3—C31.201 (4)C15—C161.524 (5)
O4—C41.392 (5)C15—H15A0.9900
O4—W1i2.1952 (19)C15—H15B0.9900
O5—C51.411 (5)C16—H16A0.9800
O5—W1i2.2010 (19)C16—H16B0.9800
N1—C131.515 (4)C16—H16C0.9800
N1—C91.516 (4)N2—C19i1.460 (7)
N1—C111.520 (4)N2—C191.460 (7)
N1—C151.530 (4)N2—C171.467 (8)
C4—H4A0.9599N2—C17i1.467 (8)
C4—H4B0.9600C17—C181.525 (12)
C5—H5A0.9600C17—H17A0.9900
C5—H5B0.9587C17—H17B0.9900
O6—C61.403 (4)C18—H18A0.9800
O6—W1i2.1844 (18)C18—H18B0.9800
C6—C71.5522C18—H18C0.9800
C6—H6A0.9900C19—C201.53 (3)
C6—H6B0.9900C19—H19A0.9900
C7—C81.4181C19—H19B0.9900
C7—H7A0.9900C20—H20A0.9800
C7—H7B0.9900C20—H20B0.9800
C8—O71.389 (4)C20—H20C0.9800
C8—H8A0.9900C17A—C18A1.522 (9)
C8—H8B0.9900C17A—H17C0.9900
O7—H70.8400C17A—H17D0.9900
C9—C101.515 (5)C18A—H18D0.9800
C9—H9A0.9900C18A—H18E0.9800
C9—H9B0.9900C18A—H18F0.9800
C10—H10A0.9800C19A—C20A1.50 (3)
C10—H10B0.9800C19A—H19C0.9900
C10—H10C0.9800C19A—H19D0.9900
C11—C121.505 (5)C20A—H20D0.9800
C11—H11A0.9900C20A—H20E0.9800
C11—H11B0.9900C20A—H20F0.9800
C12—H12A0.9800
C3—W1—C286.30 (12)C11—C12—H12B109.5
C3—W1—C185.52 (13)H12A—C12—H12B109.5
C2—W1—C185.97 (13)C11—C12—H12C109.5
C3—W1—O6165.09 (11)H12A—C12—H12C109.5
C2—W1—O6104.47 (11)H12B—C12—H12C109.5
C1—W1—O6105.23 (12)N1—C13—C14114.4 (3)
C3—W1—O499.24 (11)N1—C13—H13A108.7
C2—W1—O4100.42 (11)C14—C13—H13A108.7
C1—W1—O4172.22 (11)N1—C13—H13B108.7
O6—W1—O469.01 (9)C14—C13—H13B108.7
C3—W1—O599.61 (11)H13A—C13—H13B107.6
C2—W1—O5172.32 (10)C13—C14—H14A109.5
C1—W1—O599.30 (11)C13—C14—H14B109.5
O6—W1—O568.84 (10)H14A—C14—H14B109.5
O4—W1—O573.92 (9)C13—C14—H14C109.5
C4—O4—W1i121.34 (15)H14A—C14—H14C109.5
C4—O4—W1121.34 (15)H14B—C14—H14C109.5
W1i—O4—W196.11 (11)C16—C15—N1114.5 (3)
C5—O5—W1123.97 (13)C16—C15—H15A108.6
C5—O5—W1i123.97 (13)N1—C15—H15A108.6
W1—O5—W1i95.77 (11)C16—C15—H15B108.6
C13—N1—C9111.1 (3)N1—C15—H15B108.6
C13—N1—C11111.4 (2)H15A—C15—H15B107.6
C9—N1—C11106.9 (2)C15—C16—H16A109.5
C13—N1—C15105.7 (3)C15—C16—H16B109.5
C9—N1—C15110.7 (2)H16A—C16—H16B109.5
C11—N1—C15111.1 (2)C15—C16—H16C109.5
O1—C1—W1177.3 (3)H16A—C16—H16C109.5
O2—C2—W1178.7 (3)H16B—C16—H16C109.5
O3—C3—W1179.1 (3)C19i—N2—C1978.9 (6)
O4—C4—H4A109.5C19i—N2—C17161.5 (5)
O4—C4—H4B109.4C19—N2—C17119.1 (5)
H4A—C4—H4B109.2C19i—N2—C17i119.1 (5)
O5—C5—H5A109.9C19—N2—C17i161.5 (5)
O5—C5—H5B108.6N2—C17—C18108.0 (7)
H5A—C5—H5B106.9N2—C17—H17A110.1
C6—O6—W1i131.62 (5)C18—C17—H17A110.1
C6—O6—W1131.62 (5)N2—C17—H17B110.1
W1i—O6—W196.74 (11)C18—C17—H17B110.1
O6—C6—C7110.52 (15)H17A—C17—H17B108.4
O6—C6—H6A109.5C17—C18—H18A109.5
C7—C6—H6A109.5C17—C18—H18B109.5
O6—C6—H6B109.5H18A—C18—H18B109.5
C7—C6—H6B109.5C17—C18—H18C109.5
H6A—C6—H6B108.1H18A—C18—H18C109.5
C8—C7—C6116.6H18B—C18—H18C109.5
C8—C7—H7A108.2N2—C19—C20111.2 (13)
C6—C7—H7A108.2N2—C19—H19A109.4
C8—C7—H7B108.2C20—C19—H19A109.4
C6—C7—H7B108.2N2—C19—H19B109.4
H7A—C7—H7B107.3C20—C19—H19B109.4
O7—C8—C7128.5H19A—C19—H19B108.0
O7—C8—H8A105.2C19—C20—H20A109.5
C7—C8—H8A105.2C19—C20—H20B109.5
O7—C8—H8B105.2H20A—C20—H20B109.5
C7—C8—H8B105.2C19—C20—H20C109.5
H8A—C8—H8B105.9H20A—C20—H20C109.5
C8—O7—H7109.5H20B—C20—H20C109.5
C10—C9—N1115.6 (3)C18A—C17A—H17C107.6
C10—C9—H9A108.4C18A—C17A—H17D107.6
N1—C9—H9A108.4H17C—C17A—H17D107.0
C10—C9—H9B108.4C17A—C18A—H18D109.5
N1—C9—H9B108.4C17A—C18A—H18E109.5
H9A—C9—H9B107.4H18D—C18A—H18E109.5
C9—C10—H10A109.5C17A—C18A—H18F109.5
C9—C10—H10B109.5H18D—C18A—H18F109.5
H10A—C10—H10B109.5H18E—C18A—H18F109.5
C9—C10—H10C109.5C20A—C19A—H19C108.2
H10A—C10—H10C109.5C20A—C19A—H19D108.2
H10B—C10—H10C109.5H19C—C19A—H19D107.3
C12—C11—N1115.7 (3)C19A—C20A—H20D109.5
C12—C11—H11A108.4C19A—C20A—H20E109.5
N1—C11—H11A108.4H20D—C20A—H20E109.5
C12—C11—H11B108.4C19A—C20A—H20F109.5
N1—C11—H11B108.4H20D—C20A—H20F109.5
H11A—C11—H11B107.4H20E—C20A—H20F109.5
C11—C12—H12A109.5
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O50.842.022.838 (4)163
O7—H7···O60.842.483.077 (4)129

Experimental details

Crystal data
Chemical formula(C8H20N)3[W2(CH3O)2(C3H7O2)(CO)6]
Mr1063.63
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)110
a, b, c (Å)16.9476 (6), 24.1286 (9), 10.2457 (4)
V3)4189.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.54
Crystal size (mm)0.26 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.297, 0.485
No. of measured, independent and
observed [I > 2σ(I)] reflections
27335, 5181, 4411
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.02
No. of reflections5181
No. of parameters274
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.55, 0.77

Computer programs: APEX2 (Bruker, 2003), APEX2, SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
W1—O62.1844 (18)O5—C51.411 (5)
W1—O42.1952 (19)O5—W1i2.2010 (19)
W1—O52.2010 (19)O6—C61.403 (4)
O4—C41.392 (5)O6—W1i2.1844 (18)
O4—W1i2.1952 (19)
C4—O4—W1i121.34 (15)W1—O5—W1i95.77 (11)
W1i—O4—W196.11 (11)C6—O6—W1i131.62 (5)
C5—O5—W1123.97 (13)W1i—O6—W196.74 (11)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O50.842.022.838 (4)163
O7—H7···O60.842.483.077 (4)129
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds