metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m184-m185

Bis{2-meth­­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato-κ2O1,O2}tris­­(nitrato-κ2O,O′)methano­lsamarium(III)

aJinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: guohm8282@sina.com

(Received 12 October 2010; accepted 5 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, [Sm(NO3)3(C15H15NO2)2(CH3OH)], contains two Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolate (HL) ligands, three nitrate ions and one methanol mol­ecule that binds to the nine-coordinate samarium(III) ion via its O atoms. The HL ligands chelate with a strong Sm—O(deprotonated phenolic) bond and a weak Sm—O(meth­oxy) contact. The latter can be inter­preted as the apices of the bicapped square-anti­prismatic SmIIIO9 polyhedron. The Schiff base ligands are in a zwitterionic state with the phenolic H atom transferred to the imine N atom. O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds lend stability to the structure. One O atom of one nitrate group is equally disordered over two positions.

Related literature

For the syntheses of rare earth complexes with Schiff bases derived from o-vanillin and adamantane­amine, see: Burrows & Bailar (1966[Burrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150-4152.]); Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]); Xian et al. (2008[Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.]); Zhao et al. (2005[Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421-424.]); Liu et al. (2009[Liu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385-m1386.], 2010[Liu, J.-L., Cai, H.-T. & Zhao, G.-L. (2010). Acta Cryst. E66, m1332-m1333.]). For their applications, see: Leadbeater & Marco (2002[Leadbeater, N. E. & Marco, M. (2002). Chem. Rev. 102, 3217-3273.]); Quici et al. (2004[Quici, S., Marzanni, G., Forni, A., Accorsi, G. & Barigelletti, F. (2004). Inorg. Chem. 43, 1294-1301.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(NO3)3(C15H15NO2)2(CH4O)]

  • Mr = 850.99

  • Triclinic, [P \overline 1]

  • a = 7.8547 (10) Å

  • b = 14.6893 (19) Å

  • c = 16.590 (2) Å

  • α = 73.402 (8)°

  • β = 85.738 (7)°

  • γ = 79.230 (7)°

  • V = 1801.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 296 K

  • 0.26 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.797, Tmax = 0.870

  • 25616 measured reflections

  • 6337 independent reflections

  • 5512 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.05

  • 6337 reflections

  • 474 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14B⋯O10i 0.82 2.04 2.859 (6) 174
O14—H14B⋯O8i 0.82 2.53 3.121 (6) 130
O14—H14B⋯N4i 0.82 2.60 3.367 (6) 157
N1—H1A⋯O1 0.86 1.96 2.637 (5) 135
N1—H1A⋯O6 0.86 2.65 3.449 (7) 154
N2—H2A⋯O3 0.86 2.02 2.678 (5) 132
N2—H2A⋯O11 0.86 2.52 3.311 (5) 153
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes utilizing ligands obtained from substituted o-vanillin have been attracted considerable attention in past decades due to the intriguing biological activities of o-vanillin (Zhao et al., 2005) and its convenience in Schiff base syntheses (Burrows & Bailar, 1966). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few of articles we have reported our partial research results (Zhao et al., 2005; Xian et al. 2008; Li et al. 2008; Liu et al., 2009). Herein, we describe a new SmIII complex.

The structure of the title complex is shown in Fig.1. In this complex, the O5 atom in a nitrate anion is disordered over two sites (assigned in a 50: 50 ratio). The SmIII is nine-coordinated by O atoms, six of which come from three nitrate ions, one from methanol and two from the Schiff base ligands (HL). The HL ligands coordinate to the SmIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. Interestingly, the Schiff base ligands are in a zwitterionic state with the phenolic H transferred to the imine N. The bonds between SmIII and O atoms from phenoxy groups are 2.486 (3) and 2.428 (3), which are shorter than those between SmIII and O atoms of methoxyl groups (2.806 (4) Å and 2.957 (4) Å for Sm—O2 and Sm—O4). The nitrate anions coordinate to the SmIII via O atoms with distances ranging from 2.59 (2) to 2.743 (5), which are intermediate between the Sm—O(phenolic) and the Sm—O (methoxy) bond lengths. The Sm—O(methoxyl) bond length is only slightly longer than that for Sm—O(phenolic), and these values are similar to those reported for related complexes (Liu et al., 2010).

The hydrogen bonds and ππ weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 2. Different lines are interlocked with benzene rings of Schiff base using ππ stacking. As indicated above, in the HL ligands, the proton of the phenolic hydroxyl group has been transferred to the N-imine atom, and is involved in an intramolecular hydrogen bond (Table 2).

Related literature top

For the syntheses of rare earth complexes with Schiff base derived from o-vanillin and adamantaneamine, see: Burrows & Bailar (1966); Li et al. (2008); Xian et al. (2008); Zhao et al. (2005); Liu et al. (2009, 2010). For their applications, see: Leadbeater & Marco (2002); Quici et al. (2004).

Experimental top

Reagents and solvents used were of commercially available quality and used without further purification. The Schiff base ligand 2-[(4-methylphenyl)iminomethyl]-6-methoxy-phenol was prepared by condensation of o-vanillin and p-methylaniline with a high yield and which was purified by recrystallization in ethanol. The compound (1) was obtained by adding Sm(NO3)3 (1 mmol, dissolved in methanol) to N-salicylidene-p-toluidine (2 mmol) in methanol solution. The solution was stirred at room temperature for 8 h to obtain a purplish red solution. At last, the deposit was filtered out and the solution was kept for evaporating. Red crystals were formed after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labeling scheme. Weaker bonds to methoxy O donors shown with dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and ππ stacking interactions.
MethanolBis{2-methoxy-6-[(4-methylphenyl)iminiomethyl]phenolato- κ2O1,O2}tris(nitrato-κ2O,O')samarium(III) top
Crystal data top
[Sm(NO3)3(C15H15NO2)2(CH4O)]Z = 2
Mr = 850.99F(000) = 858
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8547 (10) ÅCell parameters from 7607 reflections
b = 14.6893 (19) Åθ = 1.7–25.0°
c = 16.590 (2) ŵ = 1.70 mm1
α = 73.402 (8)°T = 296 K
β = 85.738 (7)°Block, red
γ = 79.230 (7)°0.26 × 0.11 × 0.08 mm
V = 1801.6 (4) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
6337 independent reflections
Radiation source: fine-focus sealed tube5512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.797, Tmax = 0.870k = 1716
25616 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0718P)2 + 2.0645P]
where P = (Fo2 + 2Fc2)/3
6337 reflections(Δ/σ)max = 0.001
474 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Sm(NO3)3(C15H15NO2)2(CH4O)]γ = 79.230 (7)°
Mr = 850.99V = 1801.6 (4) Å3
Triclinic, P1Z = 2
a = 7.8547 (10) ÅMo Kα radiation
b = 14.6893 (19) ŵ = 1.70 mm1
c = 16.590 (2) ÅT = 296 K
α = 73.402 (8)°0.26 × 0.11 × 0.08 mm
β = 85.738 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
6337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5512 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.870Rint = 0.043
25616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.91 e Å3
6337 reflectionsΔρmin = 0.73 e Å3
474 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm0.01017 (3)0.327313 (17)0.806379 (17)0.04596 (12)
O10.0691 (5)0.4434 (2)0.6739 (2)0.0471 (8)
O20.2571 (5)0.2701 (3)0.6999 (3)0.0583 (10)
O30.1465 (5)0.1745 (2)0.8891 (2)0.0456 (8)
O40.0886 (6)0.2926 (3)0.9826 (3)0.0608 (11)
O50.109 (3)0.4813 (14)0.8558 (16)0.111 (8)0.50
O5'0.165 (3)0.4487 (11)0.8865 (11)0.073 (4)0.50
O60.2260 (8)0.5018 (4)0.7536 (4)0.0900 (16)
O70.3204 (8)0.5922 (4)0.8313 (4)0.109 (2)
O80.3483 (6)0.3231 (4)0.8222 (3)0.0765 (13)
O90.2151 (6)0.2403 (4)0.9302 (3)0.0735 (12)
O100.4885 (5)0.2504 (4)0.9299 (3)0.0859 (16)
O110.0722 (6)0.1724 (3)0.7704 (3)0.0583 (10)
O120.1428 (6)0.3007 (3)0.6725 (2)0.0579 (10)
O130.1868 (6)0.1644 (3)0.6599 (3)0.0726 (12)
O140.2519 (6)0.3925 (3)0.8307 (3)0.0835 (15)
H14B0.33110.35500.85840.125*
N10.0024 (5)0.6247 (3)0.5829 (3)0.0416 (9)
H1A0.02550.58040.62670.050*
N20.2117 (6)0.0081 (3)0.8804 (3)0.0461 (10)
H2A0.16040.04990.85770.055*
N30.2281 (8)0.5202 (4)0.8184 (4)0.0698 (15)
N40.3519 (6)0.2712 (3)0.8951 (3)0.0492 (10)
N50.1351 (6)0.2118 (3)0.7001 (3)0.0478 (10)
C10.1944 (6)0.5004 (4)0.5381 (3)0.0406 (11)
C20.1746 (6)0.4282 (3)0.6144 (3)0.0412 (11)
C30.2795 (7)0.3353 (4)0.6224 (4)0.0469 (12)
C40.3871 (7)0.3178 (4)0.5585 (4)0.0552 (14)
H4A0.45320.25680.56500.066*
C50.4003 (8)0.3892 (5)0.4837 (4)0.0570 (14)
H5A0.47380.37530.44060.068*
C60.3066 (7)0.4788 (4)0.4733 (3)0.0507 (13)
H6A0.31640.52640.42320.061*
C70.1065 (7)0.5962 (4)0.5278 (3)0.0437 (11)
H7A0.12760.64220.47820.052*
C80.3849 (10)0.1852 (5)0.7224 (5)0.094 (3)
H8A0.37580.14470.68710.141*
H8B0.36700.15090.78010.141*
H8C0.49810.20260.71510.141*
C90.0869 (7)0.7200 (4)0.5783 (3)0.0457 (12)
C100.1867 (9)0.7369 (4)0.6440 (4)0.0701 (18)
H10A0.20130.68570.69060.084*
C110.2681 (10)0.8297 (5)0.6430 (5)0.0770 (19)
H11A0.33700.83930.68890.092*
C120.2492 (9)0.9063 (4)0.5768 (5)0.0673 (18)
C130.1481 (13)0.8886 (5)0.5111 (5)0.090 (3)
H13A0.13200.94040.46520.108*
C140.0678 (12)0.7970 (4)0.5095 (4)0.083 (2)
H14A0.00200.78740.46270.099*
C150.3410 (12)1.0074 (5)0.5779 (6)0.097 (3)
H15A0.31251.05350.52710.145*
H15B0.30411.02300.62550.145*
H15C0.46411.00930.58190.145*
C160.2408 (7)0.0397 (4)1.0044 (3)0.0476 (12)
C170.1778 (6)0.1389 (3)0.9681 (3)0.0394 (10)
C180.1523 (7)0.1990 (4)1.0221 (3)0.0465 (12)
C190.1914 (9)0.1636 (5)1.1055 (4)0.0627 (16)
H19A0.17520.20491.13970.075*
C200.2555 (10)0.0657 (5)1.1392 (4)0.0711 (18)
H20A0.27930.04201.19620.085*
C210.2832 (10)0.0052 (4)1.0904 (4)0.0668 (17)
H21A0.33020.05941.11320.080*
C220.2596 (8)0.0269 (4)0.9567 (3)0.0538 (14)
H22A0.31120.09000.98250.065*
C230.0593 (17)0.3594 (6)1.0325 (7)0.144 (5)
H23A0.02640.34131.07560.216*
H23B0.01900.42310.99740.216*
H23C0.16560.35851.05800.216*
C240.2346 (7)0.0733 (3)0.8296 (3)0.0452 (12)
C250.1500 (8)0.0456 (4)0.7550 (4)0.0589 (15)
H25A0.07860.01440.73850.071*
C260.1708 (9)0.1065 (4)0.7045 (4)0.0658 (17)
H26A0.11080.08770.65450.079*
C270.2795 (8)0.1956 (4)0.7264 (4)0.0582 (15)
C280.3595 (9)0.2217 (4)0.8015 (4)0.0663 (17)
H28A0.42990.28190.81850.080*
C290.3398 (8)0.1621 (4)0.8528 (4)0.0598 (15)
H29A0.39760.18160.90350.072*
C300.3049 (11)0.2602 (6)0.6691 (6)0.090 (2)
H30A0.37980.31950.69510.136*
H30B0.35640.22870.61670.136*
H30C0.19480.27380.65890.136*
C310.3016 (13)0.4851 (7)0.7970 (8)0.128 (4)
H31A0.38920.49170.83130.192*
H31B0.20240.53460.79650.192*
H31C0.34640.49120.74070.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm0.04454 (18)0.03294 (16)0.05411 (19)0.00013 (11)0.00159 (12)0.00623 (12)
O10.047 (2)0.0330 (17)0.053 (2)0.0016 (15)0.0119 (16)0.0051 (15)
O20.049 (2)0.0330 (18)0.078 (3)0.0069 (16)0.0148 (19)0.0046 (18)
O30.050 (2)0.0344 (17)0.046 (2)0.0045 (15)0.0124 (16)0.0070 (15)
O40.077 (3)0.039 (2)0.070 (3)0.0017 (18)0.020 (2)0.0224 (19)
O50.097 (15)0.072 (13)0.18 (2)0.028 (9)0.043 (14)0.074 (14)
O5'0.090 (12)0.049 (8)0.084 (9)0.020 (6)0.034 (8)0.036 (7)
O60.108 (4)0.063 (3)0.083 (4)0.012 (3)0.012 (3)0.015 (3)
O70.116 (5)0.069 (3)0.133 (5)0.048 (3)0.016 (4)0.049 (3)
O80.056 (3)0.086 (3)0.071 (3)0.006 (2)0.004 (2)0.001 (3)
O90.059 (3)0.080 (3)0.068 (3)0.016 (2)0.002 (2)0.004 (2)
O100.041 (2)0.099 (4)0.090 (3)0.014 (2)0.003 (2)0.017 (3)
O110.072 (3)0.0380 (19)0.062 (2)0.0004 (18)0.021 (2)0.0105 (18)
O120.075 (3)0.047 (2)0.044 (2)0.0038 (19)0.0061 (18)0.0042 (17)
O130.076 (3)0.084 (3)0.072 (3)0.017 (2)0.008 (2)0.039 (3)
O140.060 (3)0.064 (3)0.113 (4)0.023 (2)0.036 (3)0.014 (3)
N10.049 (2)0.032 (2)0.043 (2)0.0102 (18)0.0021 (18)0.0069 (17)
N20.055 (3)0.029 (2)0.047 (2)0.0057 (18)0.001 (2)0.0069 (18)
N30.068 (4)0.043 (3)0.093 (4)0.012 (3)0.006 (3)0.023 (3)
N40.042 (3)0.043 (2)0.050 (3)0.0067 (19)0.002 (2)0.007 (2)
N50.042 (2)0.054 (3)0.049 (3)0.004 (2)0.0041 (19)0.019 (2)
C10.037 (3)0.045 (3)0.045 (3)0.014 (2)0.003 (2)0.015 (2)
C20.036 (3)0.040 (3)0.051 (3)0.011 (2)0.003 (2)0.017 (2)
C30.038 (3)0.038 (3)0.064 (3)0.007 (2)0.006 (2)0.016 (2)
C40.047 (3)0.051 (3)0.073 (4)0.004 (2)0.006 (3)0.031 (3)
C50.055 (3)0.068 (4)0.058 (3)0.015 (3)0.014 (3)0.035 (3)
C60.053 (3)0.062 (3)0.042 (3)0.019 (3)0.005 (2)0.019 (3)
C70.049 (3)0.042 (3)0.040 (3)0.015 (2)0.007 (2)0.006 (2)
C80.077 (5)0.060 (4)0.106 (6)0.029 (4)0.025 (4)0.005 (4)
C90.048 (3)0.039 (3)0.053 (3)0.011 (2)0.008 (2)0.014 (2)
C100.086 (5)0.043 (3)0.076 (4)0.015 (3)0.022 (4)0.011 (3)
C110.080 (5)0.059 (4)0.095 (5)0.005 (3)0.015 (4)0.035 (4)
C120.079 (4)0.039 (3)0.088 (5)0.005 (3)0.024 (4)0.022 (3)
C130.152 (8)0.041 (3)0.065 (4)0.001 (4)0.005 (5)0.005 (3)
C140.137 (7)0.046 (3)0.051 (4)0.002 (4)0.013 (4)0.007 (3)
C150.123 (7)0.051 (4)0.121 (7)0.005 (4)0.024 (6)0.040 (4)
C160.054 (3)0.037 (3)0.043 (3)0.002 (2)0.000 (2)0.003 (2)
C170.035 (3)0.037 (2)0.043 (3)0.002 (2)0.002 (2)0.009 (2)
C180.043 (3)0.040 (3)0.056 (3)0.005 (2)0.005 (2)0.013 (2)
C190.077 (4)0.063 (4)0.052 (3)0.010 (3)0.001 (3)0.023 (3)
C200.104 (5)0.061 (4)0.040 (3)0.009 (4)0.006 (3)0.005 (3)
C210.098 (5)0.046 (3)0.043 (3)0.001 (3)0.004 (3)0.001 (3)
C220.069 (4)0.032 (3)0.051 (3)0.004 (2)0.004 (3)0.006 (2)
C230.230 (13)0.064 (5)0.150 (9)0.048 (6)0.099 (9)0.072 (6)
C240.047 (3)0.032 (2)0.054 (3)0.002 (2)0.000 (2)0.013 (2)
C250.072 (4)0.036 (3)0.063 (4)0.011 (3)0.011 (3)0.015 (3)
C260.078 (4)0.054 (3)0.065 (4)0.002 (3)0.019 (3)0.016 (3)
C270.056 (3)0.049 (3)0.074 (4)0.001 (3)0.001 (3)0.029 (3)
C280.072 (4)0.041 (3)0.081 (4)0.018 (3)0.013 (3)0.024 (3)
C290.063 (4)0.048 (3)0.061 (3)0.013 (3)0.010 (3)0.014 (3)
C300.092 (6)0.074 (5)0.122 (7)0.004 (4)0.012 (5)0.062 (5)
C310.106 (7)0.085 (6)0.190 (11)0.044 (5)0.050 (7)0.006 (7)
Geometric parameters (Å, º) top
Sm—O32.428 (3)C8—H8B0.9600
Sm—O12.486 (3)C8—H8C0.9600
Sm—O142.529 (4)C9—C101.349 (8)
Sm—O52.59 (2)C9—C141.380 (8)
Sm—O5'2.594 (19)C10—C111.389 (9)
Sm—O112.648 (4)C10—H10A0.9300
Sm—O82.660 (4)C11—C121.352 (10)
Sm—O122.676 (4)C11—H11A0.9300
Sm—O92.688 (4)C12—C131.357 (11)
Sm—O62.743 (5)C12—C151.530 (9)
Sm—O22.806 (4)C13—C141.382 (9)
Sm—O42.957 (4)C13—H13A0.9300
O1—C21.283 (6)C14—H14A0.9300
O2—C31.387 (7)C15—H15A0.9600
O2—C81.423 (7)C15—H15B0.9600
O3—C171.288 (6)C15—H15C0.9600
O4—C181.359 (6)C16—C221.407 (7)
O4—C231.434 (8)C16—C211.413 (8)
O5—N31.12 (2)C16—C171.416 (7)
O5'—N31.354 (19)C17—C181.407 (7)
O6—N31.179 (7)C18—C191.368 (8)
O7—N31.229 (7)C19—C201.396 (9)
O8—N41.234 (6)C19—H19A0.9300
O9—N41.208 (6)C20—C211.344 (9)
O10—N41.227 (6)C20—H20A0.9300
O11—N51.238 (6)C21—H21A0.9300
O12—N51.246 (6)C22—H22A0.9300
O13—N51.227 (6)C23—H23A0.9600
O14—C311.431 (9)C23—H23B0.9600
O14—H14B0.8200C23—H23C0.9600
N1—C71.307 (7)C24—C251.368 (8)
N1—C91.417 (6)C24—C291.375 (7)
N1—H1A0.8601C25—C261.371 (8)
N2—C221.285 (7)C25—H25A0.9300
N2—C241.427 (6)C26—C271.390 (8)
N2—H2A0.8601C26—H26A0.9300
C1—C61.407 (7)C27—C281.360 (9)
C1—C71.415 (7)C27—C301.503 (8)
C1—C21.421 (7)C28—C291.367 (8)
C2—C31.431 (7)C28—H28A0.9300
C3—C41.359 (8)C29—H29A0.9300
C4—C51.389 (9)C30—H30A0.9600
C4—H4A0.9300C30—H30B0.9600
C5—C61.354 (8)C30—H30C0.9600
C5—H5A0.9300C31—H31A0.9600
C6—H6A0.9300C31—H31B0.9600
C7—H7A0.9300C31—H31C0.9600
C8—H8A0.9600
O3—Sm—O1131.61 (12)O1—C2—C1122.9 (4)
O3—Sm—O1483.87 (13)O1—C2—C3120.6 (5)
O1—Sm—O1470.74 (14)C1—C2—C3116.5 (5)
O3—Sm—O5126.1 (6)C4—C3—O2126.3 (5)
O1—Sm—O583.5 (5)C4—C3—C2120.8 (5)
O14—Sm—O570.3 (5)O2—C3—C2112.8 (4)
O3—Sm—O5'117.5 (4)C3—C4—C5121.4 (5)
O1—Sm—O5'99.2 (3)C3—C4—H4A119.3
O14—Sm—O5'81.8 (4)C5—C4—H4A119.3
O5—Sm—O5'17.0 (6)C6—C5—C4120.2 (5)
O3—Sm—O1164.60 (11)C6—C5—H5A119.9
O1—Sm—O11108.63 (12)C4—C5—H5A119.9
O14—Sm—O11137.26 (15)C5—C6—C1120.3 (5)
O5—Sm—O11151.9 (5)C5—C6—H6A119.8
O5'—Sm—O11137.5 (4)C1—C6—H6A119.8
O3—Sm—O8109.06 (14)N1—C7—C1124.8 (5)
O1—Sm—O8112.92 (13)N1—C7—H7A117.6
O14—Sm—O8151.18 (19)C1—C7—H7A117.6
O5—Sm—O881.5 (5)O2—C8—H8A109.5
O5'—Sm—O869.4 (4)O2—C8—H8B109.5
O11—Sm—O870.40 (15)H8A—C8—H8B109.5
O3—Sm—O12109.27 (11)O2—C8—H8C109.5
O1—Sm—O1268.65 (12)H8A—C8—H8C109.5
O14—Sm—O12134.84 (16)H8B—C8—H8C109.5
O5—Sm—O12122.6 (6)C10—C9—C14118.6 (5)
O5'—Sm—O12123.4 (4)C10—C9—N1119.1 (5)
O11—Sm—O1246.92 (11)C14—C9—N1122.3 (5)
O8—Sm—O1266.47 (14)C9—C10—C11121.0 (6)
O3—Sm—O969.41 (13)C9—C10—H10A119.5
O1—Sm—O9158.08 (13)C11—C10—H10A119.5
O14—Sm—O9124.08 (16)C12—C11—C10121.4 (7)
O5—Sm—O987.0 (5)C12—C11—H11A119.3
O5'—Sm—O970.0 (4)C10—C11—H11A119.3
O11—Sm—O972.44 (15)C11—C12—C13117.2 (6)
O8—Sm—O945.88 (14)C11—C12—C15119.9 (7)
O12—Sm—O9100.68 (14)C13—C12—C15122.9 (7)
O3—Sm—O6164.80 (15)C12—C13—C14122.9 (7)
O1—Sm—O662.02 (14)C12—C13—H13A118.6
O14—Sm—O696.90 (17)C14—C13—H13A118.6
O5—Sm—O641.8 (6)C9—C14—C13119.0 (7)
O5'—Sm—O648.0 (4)C9—C14—H14A120.5
O11—Sm—O6121.16 (16)C13—C14—H14A120.5
O8—Sm—O663.90 (17)C12—C15—H15A109.5
O12—Sm—O680.97 (16)C12—C15—H15B109.5
O9—Sm—O698.12 (16)H15A—C15—H15B109.5
O3—Sm—O274.45 (12)C12—C15—H15C109.5
O1—Sm—O259.20 (10)H15A—C15—H15C109.5
O14—Sm—O273.05 (17)H15B—C15—H15C109.5
O5—Sm—O2134.4 (5)C22—C16—C21118.4 (5)
O5'—Sm—O2151.0 (4)C22—C16—C17121.2 (5)
O11—Sm—O271.23 (13)C21—C16—C17120.4 (5)
O8—Sm—O2134.55 (14)O3—C17—C18120.4 (4)
O12—Sm—O269.76 (13)O3—C17—C16122.5 (4)
O9—Sm—O2136.84 (13)C18—C17—C16117.1 (4)
O6—Sm—O2120.37 (14)O4—C18—C19125.2 (5)
O3—Sm—O456.71 (10)O4—C18—C17113.3 (4)
O1—Sm—O4131.51 (12)C19—C18—C17121.5 (5)
O14—Sm—O462.62 (15)C18—C19—C20120.1 (5)
O5—Sm—O469.4 (6)C18—C19—H19A119.9
O5'—Sm—O462.8 (4)C20—C19—H19A119.9
O11—Sm—O4114.13 (11)C21—C20—C19120.9 (6)
O8—Sm—O4102.27 (13)C21—C20—H20A119.6
O12—Sm—O4159.57 (12)C19—C20—H20A119.6
O9—Sm—O461.61 (13)C20—C21—C16120.0 (5)
O6—Sm—O4110.19 (15)C20—C21—H21A120.0
O2—Sm—O4115.10 (12)C16—C21—H21A120.0
C2—O1—Sm129.3 (3)N2—C22—C16125.5 (5)
C3—O2—C8116.8 (5)N2—C22—H22A117.2
C3—O2—Sm117.3 (3)C16—C22—H22A117.2
C8—O2—Sm125.4 (4)O4—C23—H23A109.5
C17—O3—Sm133.4 (3)O4—C23—H23B109.5
C18—O4—C23117.3 (5)H23A—C23—H23B109.5
C18—O4—Sm114.4 (3)O4—C23—H23C109.5
C23—O4—Sm127.9 (4)H23A—C23—H23C109.5
N3—O5—Sm104.8 (14)H23B—C23—H23C109.5
N3—O5'—Sm97.3 (9)C25—C24—C29119.3 (5)
N3—O6—Sm94.8 (4)C25—C24—N2118.5 (4)
N4—O8—Sm98.8 (3)C29—C24—N2122.1 (5)
N4—O9—Sm98.1 (3)C24—C25—C26119.8 (5)
N5—O11—Sm98.8 (3)C24—C25—H25A120.1
N5—O12—Sm97.1 (3)C26—C25—H25A120.1
C31—O14—Sm131.7 (5)C25—C26—C27121.5 (6)
C31—O14—H14B109.5C25—C26—H26A119.2
Sm—O14—H14B118.5C27—C26—H26A119.2
C7—N1—C9127.4 (4)C28—C27—C26117.3 (5)
C7—N1—H1A116.2C28—C27—C30121.9 (6)
C9—N1—H1A116.4C26—C27—C30120.8 (6)
C22—N2—C24126.7 (4)C27—C28—C29122.0 (5)
C22—N2—H2A116.5C27—C28—H28A119.0
C24—N2—H2A116.8C29—C28—H28A119.0
O5—N3—O6111.8 (13)C28—C29—C24120.1 (5)
O5—N3—O7123.0 (13)C28—C29—H29A120.0
O6—N3—O7122.2 (7)C24—C29—H29A120.0
O5—N3—O5'34.4 (13)C27—C30—H30A109.5
O6—N3—O5'118.1 (9)C27—C30—H30B109.5
O7—N3—O5'117.3 (10)H30A—C30—H30B109.5
O9—N4—O10121.5 (5)C27—C30—H30C109.5
O9—N4—O8117.2 (5)H30A—C30—H30C109.5
O10—N4—O8121.3 (5)H30B—C30—H30C109.5
O13—N5—O11120.7 (5)O14—C31—H31A109.5
O13—N5—O12122.1 (5)O14—C31—H31B109.5
O11—N5—O12117.2 (4)H31A—C31—H31B109.5
C6—C1—C7119.2 (5)O14—C31—H31C109.5
C6—C1—C2120.7 (5)H31A—C31—H31C109.5
C7—C1—C2120.1 (5)H31B—C31—H31C109.5
O3—Sm—O1—C226.1 (5)O3—Sm—O11—N5161.7 (4)
O14—Sm—O1—C288.6 (4)O1—Sm—O11—N533.7 (3)
O5—Sm—O1—C2160.0 (7)O14—Sm—O11—N5115.1 (3)
O5'—Sm—O1—C2166.5 (6)O5—Sm—O11—N578.5 (13)
O11—Sm—O1—C246.1 (4)O5'—Sm—O11—N594.5 (6)
O8—Sm—O1—C2122.1 (4)O8—Sm—O11—N574.8 (3)
O12—Sm—O1—C271.2 (4)O12—Sm—O11—N50.9 (3)
O9—Sm—O1—C2135.2 (4)O9—Sm—O11—N5123.3 (3)
O6—Sm—O1—C2162.1 (5)O6—Sm—O11—N534.3 (4)
O2—Sm—O1—C27.3 (4)O2—Sm—O11—N580.4 (3)
O4—Sm—O1—C2104.9 (4)O4—Sm—O11—N5169.8 (3)
O3—Sm—O2—C3173.2 (4)O3—Sm—O12—N519.3 (3)
O1—Sm—O2—C37.7 (3)O1—Sm—O12—N5147.5 (3)
O14—Sm—O2—C385.0 (4)O14—Sm—O12—N5120.1 (3)
O5—Sm—O2—C347.4 (9)O5—Sm—O12—N5145.7 (6)
O5'—Sm—O2—C354.0 (9)O5'—Sm—O12—N5125.5 (5)
O11—Sm—O2—C3118.9 (4)O11—Sm—O12—N50.9 (3)
O8—Sm—O2—C385.2 (4)O8—Sm—O12—N583.7 (3)
O12—Sm—O2—C368.9 (3)O9—Sm—O12—N552.5 (3)
O9—Sm—O2—C3152.9 (3)O6—Sm—O12—N5149.1 (3)
O6—Sm—O2—C33.1 (4)O2—Sm—O12—N583.7 (3)
O4—Sm—O2—C3132.6 (3)O4—Sm—O12—N524.1 (5)
O3—Sm—O2—C81.5 (5)O3—Sm—O14—C31172.3 (9)
O1—Sm—O2—C8164.1 (6)O1—Sm—O14—C3134.1 (9)
O14—Sm—O2—C886.8 (6)O5—Sm—O14—C3155.8 (10)
O5—Sm—O2—C8124.3 (10)O5'—Sm—O14—C3168.7 (9)
O5'—Sm—O2—C8117.7 (10)O11—Sm—O14—C31131.0 (8)
O11—Sm—O2—C869.4 (6)O8—Sm—O14—C3168.6 (10)
O8—Sm—O2—C8103.1 (6)O12—Sm—O14—C3161.1 (9)
O12—Sm—O2—C8119.3 (6)O9—Sm—O14—C31127.7 (9)
O9—Sm—O2—C835.3 (6)O6—Sm—O14—C3123.0 (9)
O6—Sm—O2—C8174.9 (6)O2—Sm—O14—C3196.7 (9)
O4—Sm—O2—C839.1 (6)O4—Sm—O14—C31132.2 (9)
O1—Sm—O3—C17131.5 (4)Sm—O5—N3—O626.8 (14)
O14—Sm—O3—C1774.1 (4)Sm—O5—N3—O7172.7 (6)
O5—Sm—O3—C1714.0 (8)Sm—O5—N3—O5'81 (3)
O5'—Sm—O3—C173.3 (6)Sm—O6—N3—O524.4 (12)
O11—Sm—O3—C17135.6 (5)Sm—O6—N3—O7174.9 (7)
O8—Sm—O3—C1779.4 (4)Sm—O6—N3—O5'13.0 (11)
O12—Sm—O3—C17150.3 (4)Sm—O5'—N3—O574 (3)
O9—Sm—O3—C1755.8 (4)Sm—O5'—N3—O613.9 (11)
O6—Sm—O3—C1719.7 (8)Sm—O5'—N3—O7176.6 (6)
O2—Sm—O3—C17148.2 (4)Sm—O9—N4—O10179.1 (5)
O4—Sm—O3—C1713.0 (4)Sm—O9—N4—O82.1 (6)
O3—Sm—O4—C189.3 (3)Sm—O8—N4—O92.1 (6)
O1—Sm—O4—C18128.0 (3)Sm—O8—N4—O10179.1 (5)
O14—Sm—O4—C18110.6 (4)Sm—O11—N5—O13178.6 (4)
O5—Sm—O4—C18171.6 (6)Sm—O11—N5—O121.6 (5)
O5'—Sm—O4—C18154.5 (6)Sm—O12—N5—O13178.6 (4)
O11—Sm—O4—C1821.8 (4)Sm—O12—N5—O111.6 (5)
O8—Sm—O4—C1895.6 (4)Sm—O1—C2—C1173.7 (3)
O12—Sm—O4—C1841.5 (6)Sm—O1—C2—C36.3 (7)
O9—Sm—O4—C1873.6 (4)C6—C1—C2—O1177.3 (5)
O6—Sm—O4—C18162.0 (4)C7—C1—C2—O15.3 (7)
O2—Sm—O4—C1857.9 (4)C6—C1—C2—C32.7 (7)
O3—Sm—O4—C23178.3 (8)C7—C1—C2—C3174.8 (4)
O1—Sm—O4—C2359.7 (8)C8—O2—C3—C415.5 (9)
O14—Sm—O4—C2377.0 (8)Sm—O2—C3—C4172.0 (4)
O5—Sm—O4—C230.8 (9)C8—O2—C3—C2164.4 (6)
O5'—Sm—O4—C2317.9 (9)Sm—O2—C3—C28.1 (5)
O11—Sm—O4—C23150.6 (8)O1—C2—C3—C4177.7 (5)
O8—Sm—O4—C2376.8 (8)C1—C2—C3—C42.2 (7)
O12—Sm—O4—C23130.8 (8)O1—C2—C3—O22.4 (7)
O9—Sm—O4—C2398.7 (8)C1—C2—C3—O2177.7 (4)
O6—Sm—O4—C2310.3 (8)O2—C3—C4—C5179.4 (5)
O2—Sm—O4—C23129.8 (8)C2—C3—C4—C50.6 (8)
O3—Sm—O5—N3151.7 (11)C3—C4—C5—C60.7 (9)
O1—Sm—O5—N370.1 (14)C4—C5—C6—C10.3 (8)
O14—Sm—O5—N3142.0 (15)C7—C1—C6—C5176.0 (5)
O5'—Sm—O5—N387 (3)C2—C1—C6—C51.5 (7)
O11—Sm—O5—N348 (2)C9—N1—C7—C1176.3 (4)
O8—Sm—O5—N344.3 (13)C6—C1—C7—N1179.1 (5)
O12—Sm—O5—N310.7 (17)C2—C1—C7—N13.5 (7)
O9—Sm—O5—N390.1 (14)C7—N1—C9—C10175.6 (5)
O6—Sm—O5—N315.7 (9)C7—N1—C9—C143.0 (8)
O2—Sm—O5—N3103.7 (13)C14—C9—C10—C110.4 (10)
O4—Sm—O5—N3150.8 (15)N1—C9—C10—C11178.3 (6)
O3—Sm—O5'—N3178.7 (7)C9—C10—C11—C120.5 (11)
O1—Sm—O5'—N331.2 (9)C10—C11—C12—C130.3 (11)
O14—Sm—O5'—N3100.1 (9)C10—C11—C12—C15179.9 (7)
O5—Sm—O5'—N354 (3)C11—C12—C13—C140.9 (13)
O11—Sm—O5'—N399.8 (8)C15—C12—C13—C14178.8 (8)
O8—Sm—O5'—N379.9 (9)C10—C9—C14—C131.5 (11)
O12—Sm—O5'—N339.2 (10)N1—C9—C14—C13177.1 (7)
O9—Sm—O5'—N3129.0 (10)C12—C13—C14—C91.8 (13)
O6—Sm—O5'—N37.0 (6)Sm—O3—C17—C1815.1 (7)
O2—Sm—O5'—N370.2 (14)Sm—O3—C17—C16165.9 (4)
O4—Sm—O5'—N3163.4 (10)C22—C16—C17—O35.2 (8)
O3—Sm—O6—N327.7 (9)C21—C16—C17—O3176.1 (5)
O1—Sm—O6—N3128.2 (5)C22—C16—C17—C18175.8 (5)
O14—Sm—O6—N364.3 (5)C21—C16—C17—C182.9 (8)
O5—Sm—O6—N314.5 (8)C23—O4—C18—C190.3 (10)
O5'—Sm—O6—N38.0 (6)Sm—O4—C18—C19173.5 (5)
O11—Sm—O6—N3136.0 (4)C23—O4—C18—C17179.7 (7)
O8—Sm—O6—N393.1 (5)Sm—O4—C18—C177.1 (5)
O12—Sm—O6—N3161.3 (5)O3—C17—C18—O42.1 (7)
O9—Sm—O6—N361.7 (5)C16—C17—C18—O4178.8 (5)
O2—Sm—O6—N3138.7 (4)O3—C17—C18—C19177.3 (5)
O4—Sm—O6—N31.0 (5)C16—C17—C18—C191.8 (8)
O3—Sm—O8—N432.6 (4)O4—C18—C19—C20179.7 (6)
O1—Sm—O8—N4172.0 (3)C17—C18—C19—C201.0 (10)
O14—Sm—O8—N480.6 (5)C18—C19—C20—C211.4 (11)
O5—Sm—O8—N492.8 (7)C19—C20—C21—C162.5 (11)
O5'—Sm—O8—N480.5 (5)C22—C16—C21—C20175.4 (7)
O11—Sm—O8—N485.4 (4)C17—C16—C21—C203.3 (10)
O12—Sm—O8—N4135.9 (4)C24—N2—C22—C16177.6 (5)
O9—Sm—O8—N41.2 (3)C21—C16—C22—N2173.2 (6)
O6—Sm—O8—N4132.8 (4)C17—C16—C22—N25.5 (9)
O2—Sm—O8—N4119.3 (3)C22—N2—C24—C25169.1 (6)
O4—Sm—O8—N426.1 (4)C22—N2—C24—C2911.6 (9)
O3—Sm—O9—N4149.4 (4)C29—C24—C25—C260.1 (10)
O1—Sm—O9—N415.7 (6)N2—C24—C25—C26179.4 (6)
O14—Sm—O9—N4143.6 (3)C24—C25—C26—C271.4 (11)
O5—Sm—O9—N480.0 (7)C25—C26—C27—C282.4 (10)
O5'—Sm—O9—N479.1 (6)C25—C26—C27—C30178.2 (7)
O11—Sm—O9—N480.7 (4)C26—C27—C28—C292.1 (11)
O8—Sm—O9—N41.2 (3)C30—C27—C28—C29178.5 (7)
O12—Sm—O9—N442.7 (4)C27—C28—C29—C240.9 (11)
O6—Sm—O9—N439.6 (4)C25—C24—C29—C280.2 (10)
O2—Sm—O9—N4114.4 (4)N2—C24—C29—C28179.1 (6)
O4—Sm—O9—N4148.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14B···O10i0.822.042.859 (6)174
O14—H14B···O8i0.822.533.121 (6)130
O14—H14B···N4i0.822.603.367 (6)157
N1—H1A···O10.861.962.637 (5)135
N1—H1A···O60.862.653.449 (7)154
N2—H2A···O30.862.022.678 (5)132
N2—H2A···O110.862.523.311 (5)153
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Sm(NO3)3(C15H15NO2)2(CH4O)]
Mr850.99
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8547 (10), 14.6893 (19), 16.590 (2)
α, β, γ (°)73.402 (8), 85.738 (7), 79.230 (7)
V3)1801.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.26 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
25616, 6337, 5512
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.05
No. of reflections6337
No. of parameters474
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.73

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14B···O10i0.822.042.859 (6)174
O14—H14B···O8i0.822.533.121 (6)130
O14—H14B···N4i0.822.603.367 (6)157
N1—H1A···O10.861.962.637 (5)135
N1—H1A···O60.862.653.449 (7)154
N2—H2A···O30.862.022.678 (5)132
N2—H2A···O110.862.523.311 (5)153
Symmetry code: (i) x+1, y, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150–4152.  CrossRef CAS Web of Science Google Scholar
First citationLeadbeater, N. E. & Marco, M. (2002). Chem. Rev. 102, 3217–3273.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-L., Cai, H.-T. & Zhao, G.-L. (2010). Acta Cryst. E66, m1332–m1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385–m1386.  Web of Science CrossRef IUCr Journals Google Scholar
First citationQuici, S., Marzanni, G., Forni, A., Accorsi, G. & Barigelletti, F. (2004). Inorg. Chem. 43, 1294–1301.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m184-m185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds