Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The CO2-concentrating mechanism (CCM) has evolved to improve the efficiency of photosynthesis in autotrophic cyanobacteria. CmpR, a LysR-type transcriptional regulator (LTTR) from Synechococcus elongatus PCC 7942, was found to regulate CCM-related genes under low-CO2 conditions. Here, the dimeric structure of the effector-binding domain of CmpR (CmpR-EBD) in complex with the co-activator ribulose 1,5-bisphosphate (RuBP) is reported at 2.15 Å resolution. One RuBP molecule binds to the inter-domain cleft between the two subunits of the CmpR-EBD dimer. Structural comparison combined with sequence analyses demonstrated that CmpR-EBD has an overall structure similar to those of LTTRs of known structure, but possesses a distinctly different effector-binding pattern.

Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds