Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In this work, the refractive index of beryllium in the photon energy range 20.4–250 eV was experimentally determined. The initial data include measurements of the transmittance of two free-standing Be films with thicknesses of 70 nm and 152 nm, as well as reflectometric measurements of similar films on a substrate. Measurements were carried out at the optics beamline of the BESSY II synchrotron radiation source. The absorption coefficient β was found directly from the transmission coefficient of the films, and the real part of the polarizability δ was calculated from the Kramers–Kronig relations. A comparison is carried out with results obtained 20 years ago at the ALS synchrotron using a similar methodology.

Supporting information

txt

Text file https://doi.org/10.1107/S1600577519014188/tv5003sup1.txt
Real and imaginary parts of refraction index of Be in photon energy range 20.4-250 eV (or wavelength 49.6-607.7 A), obtained in this work


Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds