Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The high-quality aspects of magnified X-ray images recorded using MIRRORCLE-6X are reported. MIRRORCLE-6X is inherently suitable for hard X-ray imaging owing to its magnified projection X-ray imaging, micrometre-size X-ray source point, wide radiation emission angle, X-ray spectrum ranging from 10 keV to 6 MeV, natural refraction contrast imaging and high flux output. Images produced with 11× geometrical magnification display a sharply enhanced edge effect when generated using a 25 µm rod electron target. Image contrast is enhanced 2× owing to refraction when compared with absorption contrast images. An imitation tumour implanted in a human chest phantom was made clearly visible by using edge enhancement on images. Soft tissue becomes highly visible as a natural consequence of refraction contrast when using hard X-rays for imaging. The authors believe that novel imaging provided by MIRRORCLE makes it a superior instrument for medical diagnosis.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds