Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Zirconium alloys are used in fuel cladding and structural components of nuclear power plants. Hydrogen enters the Zr matrix during plant operation and precipitates as hydride particles that degrade the mechanical properties of the alloy, limiting service life. Knowledge of the stress state within hydride precipitates is important to understand stress-induced degradation mechanisms such as delayed hydride cracking, but no direct quantification has yet been reported in the literature. Here, measurements are reported of the average elastic strain tensor within δ zirconium hydride precipitates in Zr2.5%Nb pressure tube material from CANDU power plants. Complete intensity and strain pole figures for the hydride were obtained by synchrotron X-ray diffraction experiments on specimens with hydrogen contents ranging from ∼100 wt p.p.m. hydrogen to nearly 100% δ-hydride. Zirconium hydride precipitates by a process involving a martensitic transformation, with two hydride variants possible from a single α-Zr grain. A synthetic model of the hydride crystallographic texture allowed the interpretation of the measured strain pole figures and quantification of the elastic strain tensor for both texture components. It was found that the two variants appear in nearly equal proportion but with different stress states, differing in the sign of the shear strain components (∼±3000 µ[epsilon]). This difference is possibly associated with the shear movement of Zr atoms during the phase transformation. This suggests that hydride clusters are composed of stacks of smaller hydrides in alternating hydride variants. Stresses were estimated from a set of rather uncertain hydride elastic constants. Overall, both variants showed compressive strains along the tube axial direction (∼5000 µ[epsilon]). For low hydrogen concentrations, the hydrides' stress tensor is dominated by compressive stresses of ∼300 MPa along the axial direction, probably caused by the elongated morphology of hydride clusters along this direction, and variant-dependent shear stresses of ∼±100 MPa, probably from the shear movement of the Zr atoms involved in the phase transformation.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds