Download citation
Download citation
link to html
K4[Ta6Cl12]Cl6 was obtained as a by-product during the reaction of VCl3 and KCl in a sealed tantalum container. The compound is isotypic to K4Nb6Cl18 [Simon, von Schnering & Schäfer (1968). Z. Anorg. Allg. Chem. 361, 235–246] and contains octahedral ([Ta6Cl12]Cl6)4− clusters with 2/m site symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804017106/bt6483sup1.cif
Contains datablocks global_, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804017106/bt6483Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Ta-Cl) = 0.002 Å
  • R factor = 0.029
  • wR factor = 0.067
  • Data-to-parameter ratio = 23.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.50 Tmin and Tmax reported: 0.034 0.101 Tmin and Tmax expected: 0.017 0.079 RR = 1.603 Please check that your absorption correction is appropriate.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996).

(I) top
Crystal data top
K4[Ta6Cl12]Cl6F(000) = 1640
Mr = 1880.20Dx = 4.406 Mg m3
Monoclinic, C2/mMelting point: unknown K
Hall symbol: -C 2yMo Kα radiation, λ = 0.71073 Å
a = 9.9900 (12) ÅCell parameters from 18943 reflections
b = 16.5228 (18) Åθ = 0–42.7°
c = 9.4745 (10) ŵ = 25.34 mm1
β = 115.005 (8)°T = 293 K
V = 1417.3 (3) Å3Polyhedron, black
Z = 20.2 × 0.2 × 0.1 mm
Data collection top
Stoe IPDS-II
diffractometer
1608 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: not measured pixels mm-1θmax = 27.0°, θmin = 2.4°
ω and φ scansh = 1212
Absorption correction: numerical
[X-RED (Stoe & Cie, 2002) and X-SHAPE (Stoe & Cie, 1999)]
k = 2121
Tmin = 0.034, Tmax = 0.101l = 1212
9391 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.75 e Å3
1608 reflectionsΔρmin = 1.75 e Å3
70 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00046 (6)
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected with an imaging plate diffractometer (Stoe IPDS-I) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 40 mA. Intensity data for K4[Ta6Cl12]Cl6 were collected at 293 K by ω scans in 302 frames (0 < ω < 180°; 0 < φ < 0°, 0 < ω < 151°; φ = 90°, Δω = 1°, exposure time of 5 min) in the 2Θ range 5.46–54.00°. Structure solution and refinement were carried out using the program SHELXL97 (Sheldrick, 1997). A numerical absorption correction (X-RED (Stoe & Cie, 2001) was applied after optimization of the crystal shape (X-SHAPE (Stoe & Cie, 1999)). The final difference maps were free of any chemically significant features. The refinement was based on F2 for ALL reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.13562 (3)0.087457 (18)0.64130 (3)0.02921 (12)
Ta20.11908 (4)0.00000.36889 (5)0.02920 (13)
Cl10.3027 (2)0.10501 (14)0.5121 (2)0.0408 (4)
Cl20.0201 (2)0.10454 (13)0.1776 (2)0.0384 (4)
Cl30.00000.20882 (17)0.50000.0402 (6)
Cl40.3258 (3)0.00000.8353 (3)0.0371 (6)
Cl50.3076 (2)0.19833 (14)0.8224 (2)0.0446 (5)
Cl60.2689 (3)0.00000.2073 (4)0.0469 (7)
K0.3909 (2)0.16121 (16)0.1773 (3)0.0593 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02324 (17)0.03582 (19)0.02503 (17)0.00184 (10)0.00676 (11)0.00148 (10)
Ta20.0226 (2)0.0385 (2)0.0252 (2)0.0000.00883 (15)0.000
Cl10.0320 (9)0.0549 (12)0.0360 (9)0.0125 (8)0.0149 (8)0.0055 (8)
Cl20.0349 (9)0.0496 (11)0.0307 (8)0.0027 (8)0.0140 (7)0.0067 (8)
Cl30.0404 (14)0.0366 (13)0.0346 (13)0.0000.0072 (11)0.000
Cl40.0267 (11)0.0460 (15)0.0292 (12)0.0000.0027 (9)0.000
Cl50.0361 (10)0.0494 (12)0.0412 (11)0.0067 (8)0.0093 (8)0.0092 (8)
Cl60.0422 (14)0.0603 (19)0.0459 (16)0.0000.0261 (13)0.000
K0.0507 (11)0.0672 (14)0.0605 (13)0.0080 (10)0.0239 (10)0.0133 (11)
Geometric parameters (Å, º) top
Ta1—Cl2i2.455 (2)Cl1—K3.750 (3)
Ta1—Cl12.469 (2)Cl2—Ta1i2.455 (2)
Ta1—Cl32.473 (2)Cl3—Ta1iii2.473 (2)
Ta1—Cl42.474 (2)Cl3—Kv3.512 (3)
Ta1—Cl52.600 (2)Cl3—Kvi3.512 (3)
Ta1—Ta1ii2.8901 (7)Cl4—Ta1ii2.474 (2)
Ta1—Ta2i2.8920 (5)Cl5—Kv3.053 (3)
Ta1—Ta1iii2.8944 (6)Cl5—Kiv3.073 (3)
Ta1—Ta22.9011 (5)Cl5—Kvii3.163 (3)
Ta2—Cl22.464 (2)Cl6—K2.992 (3)
Ta2—Cl2ii2.464 (2)Cl6—Kii2.992 (3)
Ta2—Cl12.472 (2)K—Cl5v3.053 (3)
Ta2—Cl1ii2.4720 (19)K—Cl5iv3.073 (3)
Ta2—Cl62.553 (3)K—Cl5viii3.163 (3)
Ta2—Ta1iii2.8920 (5)K—Cl1iv3.359 (3)
Ta2—Ta1i2.8920 (5)K—Cl3v3.512 (3)
Ta2—Ta1ii2.9011 (5)K—Kix4.452 (5)
Cl1—Kiv3.359 (3)K—Kx4.715 (5)
Cl2i—Ta1—Cl1161.60 (7)Cl1—Ta2—Ta1ii96.39 (5)
Cl2i—Ta1—Cl388.47 (5)Cl1ii—Ta2—Ta1ii53.99 (5)
Cl1—Ta1—Cl388.09 (6)Cl6—Ta2—Ta1ii134.91 (5)
Cl2i—Ta1—Cl489.31 (8)Ta1iii—Ta2—Ta1ii89.831 (15)
Cl1—Ta1—Cl488.25 (9)Ta1i—Ta2—Ta1ii59.952 (14)
Cl3—Ta1—Cl4161.54 (5)Ta1—Ta2—Ta1ii59.750 (16)
Cl2i—Ta1—Cl580.35 (7)Ta1—Cl1—Ta271.91 (5)
Cl1—Ta1—Cl581.26 (7)Ta1—Cl1—Kiv98.91 (7)
Cl3—Ta1—Cl581.02 (6)Ta2—Cl1—Kiv149.88 (10)
Cl4—Ta1—Cl580.54 (6)Ta1—Cl1—K153.94 (8)
Cl2i—Ta1—Ta1ii96.60 (5)Ta2—Cl1—K95.43 (7)
Cl1—Ta1—Ta1ii96.75 (5)Kiv—Cl1—K102.69 (8)
Cl3—Ta1—Ta1ii144.18 (4)Ta1i—Cl2—Ta272.02 (5)
Cl4—Ta1—Ta1ii54.27 (3)Ta1iii—Cl3—Ta171.64 (8)
Cl5—Ta1—Ta1ii134.79 (5)Ta1iii—Cl3—Kv149.85 (6)
Cl2i—Ta1—Ta2i54.13 (5)Ta1—Cl3—Kv97.30 (4)
Cl1—Ta1—Ta2i144.26 (5)Ta1iii—Cl3—Kvi97.30 (4)
Cl3—Ta1—Ta2i96.55 (3)Ta1—Cl3—Kvi149.85 (5)
Cl4—Ta1—Ta2i96.97 (5)Kv—Cl3—Kvi104.60 (11)
Cl5—Ta1—Ta2i134.48 (5)Ta1ii—Cl4—Ta171.46 (7)
Ta1ii—Ta1—Ta2i60.022 (8)Ta1—Cl5—Kv106.74 (8)
Cl2i—Ta1—Ta1iii96.53 (5)Ta1—Cl5—Kiv103.53 (8)
Cl1—Ta1—Ta1iii96.08 (5)Kv—Cl5—Kiv142.03 (9)
Cl3—Ta1—Ta1iii54.18 (4)Ta1—Cl5—Kvii111.62 (9)
Cl4—Ta1—Ta1iii144.26 (3)Kv—Cl5—Kvii91.47 (8)
Cl5—Ta1—Ta1iii135.20 (5)Kiv—Cl5—Kvii98.23 (8)
Ta1ii—Ta1—Ta1iii90.0Ta2—Cl6—K114.99 (7)
Ta2i—Ta1—Ta1iii60.179 (13)Ta2—Cl6—Kii114.99 (7)
Cl2i—Ta1—Ta2144.30 (5)K—Cl6—Kii125.78 (13)
Cl1—Ta1—Ta254.10 (5)Cl6—K—Cl5v112.70 (10)
Cl3—Ta1—Ta296.32 (3)Cl6—K—Cl5iv128.03 (11)
Cl4—Ta1—Ta296.15 (5)Cl5v—K—Cl5iv119.01 (9)
Cl5—Ta1—Ta2135.35 (5)Cl6—K—Cl5viii109.81 (11)
Ta1ii—Ta1—Ta260.125 (8)Cl5v—K—Cl5viii88.53 (8)
Ta2i—Ta1—Ta290.169 (15)Cl5iv—K—Cl5viii77.26 (8)
Ta1iii—Ta1—Ta259.869 (14)Cl6—K—Cl1iv85.85 (10)
Cl2—Ta2—Cl2ii89.02 (10)Cl5v—K—Cl1iv124.14 (10)
Cl2—Ta2—Cl1162.33 (7)Cl5iv—K—Cl1iv61.59 (7)
Cl2ii—Ta2—Cl188.21 (7)Cl5viii—K—Cl1iv135.87 (9)
Cl2—Ta2—Cl1ii88.21 (7)Cl6—K—Cl3v116.78 (10)
Cl2ii—Ta2—Cl1ii162.33 (7)Cl5v—K—Cl3v59.81 (6)
Cl1—Ta2—Cl1ii89.16 (11)Cl5iv—K—Cl3v86.20 (7)
Cl2—Ta2—Cl681.42 (7)Cl5viii—K—Cl3v130.71 (10)
Cl2ii—Ta2—Cl681.42 (7)Cl1iv—K—Cl3v64.76 (6)
Cl1—Ta2—Cl680.92 (7)Cl6—K—Cl156.52 (8)
Cl1ii—Ta2—Cl680.92 (7)Cl5v—K—Cl178.62 (8)
Cl2—Ta2—Ta1iii96.35 (5)Cl5iv—K—Cl1129.01 (8)
Cl2ii—Ta2—Ta1iii53.85 (5)Cl5viii—K—Cl1153.73 (9)
Cl1—Ta2—Ta1iii96.07 (5)Cl1iv—K—Cl169.11 (7)
Cl1ii—Ta2—Ta1iii143.82 (5)Cl3v—K—Cl160.82 (6)
Cl6—Ta2—Ta1iii135.26 (5)Cl6—K—Kix120.36 (11)
Cl2—Ta2—Ta1i53.85 (5)Cl5v—K—Kix45.25 (6)
Cl2ii—Ta2—Ta1i96.35 (5)Cl5iv—K—Kix100.13 (9)
Cl1—Ta2—Ta1i143.82 (5)Cl5viii—K—Kix43.28 (6)
Cl1ii—Ta2—Ta1i96.07 (5)Cl1iv—K—Kix153.47 (12)
Cl6—Ta2—Ta1i135.26 (5)Cl3v—K—Kix96.81 (9)
Ta1iii—Ta2—Ta1i59.956 (17)Cl1—K—Kix120.12 (9)
Cl2—Ta2—Ta1143.67 (5)Cl6—K—Kx113.41 (7)
Cl2ii—Ta2—Ta196.16 (5)Cl5v—K—Kx119.78 (7)
Cl1—Ta2—Ta153.99 (5)Cl5iv—K—Kx41.60 (6)
Cl1ii—Ta2—Ta196.39 (5)Cl5viii—K—Kx40.17 (5)
Cl6—Ta2—Ta1134.91 (5)Cl1iv—K—Kx95.71 (7)
Ta1iii—Ta2—Ta159.952 (14)Cl3v—K—Kx123.60 (7)
Ta1i—Ta2—Ta189.831 (15)Cl1—K—Kx161.33 (7)
Cl2—Ta2—Ta1ii96.16 (5)Kix—K—Kx78.33 (7)
Cl2ii—Ta2—Ta1ii143.68 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x, y, z+1; (viii) x, y, z1; (ix) x+1/2, y+1/2, z; (x) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds