Download citation
Download citation
link to html
In the title compound, rac-bis­[μ-(1R,2S,12R,13s,15s,17S,18r)-14,16,19-trioxa-3,7,11-tri­aza­tetra­cyclo­[13.3.1.02,13.012,17]­nona­decan-18-olato-1κ3N3,N7,N11:2κ2O18]­dizinc(II) dichloride, [Zn2(C13H22N3O4)2]Cl2, the cation displays crystallographic inversion symmetry. The geometry at zinc is trigonal bipyramidal. Three hydrogen bonds N—H...Cl lead to the formation of layers parallel to (101).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005889/bt6251sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005889/bt62512sup2.hkl
Contains datablock 2

CCDC reference: 209888

Key indicators

  • Single-crystal X-ray study
  • T = 143 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.068
  • Data-to-parameter ratio = 16.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.611 0.988 Tmin and Tmax expected: 0.341 0.629 RR = 1.142 Please check that your absorption correction is appropriate. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.637 Tmax scaled 0.629 Tmin scaled 0.389
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Many hydrolytic enzymes, particularly those that catalyse phosphoryl transfer reactions, use metal ions as cofactors (Bertini & Luchinat, 1994). The metal ion most commonly found in the active site of hydrolytic enzymes is Zn2+ (Vallee & Auld, 1993). The cations generally act as Lewis acid or electrophilic catalysts, withdrawing electron density from the coordinated substrate or stabilizing the negative charge that usually develops on the `leaving group' in hydrolytic reactions. However, the binding of metal ions to anionic, even bidentate, substrate groups such as carboxylates or phosphates, is not strong in aqueous solution (Fraústo da Silva & Williams, 1992) and enzyme structures have evolved to bind the cation in close and productive proximity to the substrate. We report the structure of a model system, designed to achieve this aim.

Enzyme model systems can only be expected to shed light on enzyme reaction mechanisms if they themselves are properly understood. If the model system features metal ion complexation, the structure and stability of the complex formed are fundamental to this understanding. We report here the structure of the zinc complex, (2), of the deprotonated triaminoalcohol ligand [(1), LOH], designed as a potential leaving group from phosphate mono- and diesters when a metal cation is bound.

The zinc cation (Fig. 1) is coordinated, as designed, to the alcohol O atom (which has lost its proton) and also to the three N atoms of the ligand (LO-). The coordination number of the metal ion is made up to five by the formation of an inversion-symmetric dimer {[Zn2(LO)2]2+}, with the alkoxide O atoms acting as bridging ligands in the central four-membered ring (which is exactly planar by symmetry). The coordination geometry of Zn2+ (for exact values and s.u.'s, see Table 1) is that of a distorted trigonal bipyramid; the axial angle N2—Zn—O4ax is 178.5° and the sum of the three equatorial angles at Zn is ca 351°. The three Zn—N distances are similar (between 2.06 and 2.11 Å), but the axial Zn—O4 distance (2.16 Å) is markedly longer than that to the bridging equatorial O atom (Zn—O4i 1.95 Å). The six-membered ring Zn—N3—C1—C11—C12—O4 displays a chair conformation, whereas Zn—N1—C3—C2—C1—N3 is a chair flattened around zinc, and Zn—N1—C4—C5—C6—N2 a distorted half-chair.

The overall 2+ charge of the dimer unit is balanced by two chloride anions. These participate in three classical hydrogen bonds N—H···Cl- (Table 2), the net effect of which is to form layers of anions and cations parallel to (101) (Fig. 2). There is also a Zn···Cli contact (not shown in Fig. 2) of 3.6628 (7) Å.

The following paper (Jones et al., 2003) reports the structure of another compound containing the same cation.

Experimental top

The title complex, (2), precipitated as a microcrystalline solid upon addition of a solution of zinc chloride in ether to a solution of (1) (Beckmann, 1998) and the strong base 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile. A single-crystal was obtained by slow evaporation of a solution in acetonitrile. The stoichiometric composition of (2) can be described as [(1) + ZnCl2 - HCl]2.

Refinement top

H atoms of NH groups were identified in difference syntheses and refined freely, but with a common N—H distance restraint. Other H atoms were included using a riding model with fixed C—H bond lengths of 1.00 (CH) or 0.99 Å (CH2); Uiso(H) values were fixed at 1.2Ueq of the parent atom.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The cation of the title compound in the crystal. Ellipsoids represent 50% probability levels and H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed perpendicular to (101). Hydrogen bonds are indicated by dashed lines. H atoms not involved in classical hydrogen bonds have been omitted.
rac-Bis[µ-(1R,2S,12R,13 s,15 s,17S,18r)-14,16,19-trioxa- 3,7,11-triazatetracyclo[13.3.1.02,13.012,17]nonadecan-18-olato- 1κ3N3,N7,N11:2κ2O18]dizinc(II) dichloride top
Crystal data top
[Zn2(C13H22N3O4)2]Cl2F(000) = 800
Mr = 770.31Dx = 1.720 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 56 reflections
a = 12.706 (2) Åθ = 10–11.5°
b = 9.2379 (16) ŵ = 1.85 mm1
c = 13.050 (2) ÅT = 143 K
β = 103.849 (12)°Tablet, colourless
V = 1487.3 (4) Å30.6 × 0.5 × 0.25 mm
Z = 2
Data collection top
Stoe STADI-4
diffractometer
3146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.6°, θmin = 3.2°
ω/θ scansh = 016
Absorption correction: ψ scans
(XEMP; Siemens, 1994)
k = 121
Tmin = 0.611, Tmax = 0.988l = 1616
3862 measured reflections3 standard reflections every 60 min
3416 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.1834P]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn2(C13H22N3O4)2]Cl2V = 1487.3 (4) Å3
Mr = 770.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.706 (2) ŵ = 1.85 mm1
b = 9.2379 (16) ÅT = 143 K
c = 13.050 (2) Å0.6 × 0.5 × 0.25 mm
β = 103.849 (12)°
Data collection top
Stoe STADI-4
diffractometer
3146 reflections with I > 2σ(I)
Absorption correction: ψ scans
(XEMP; Siemens, 1994)
Rint = 0.017
Tmin = 0.611, Tmax = 0.9883 standard reflections every 60 min
3862 measured reflections intensity decay: none
3416 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
3416 reflectionsΔρmin = 0.44 e Å3
211 parameters
Special details top

Experimental. rac-bis[µ-(1R,2S,12R,13S,15S,17S,18R)-14,16,19-trioxa- 3,7,11-triazatetracyclo-[13.3.1.02,13.012,17]nonadecan-18- olato-κ3N3,N7,N11;1:2κ2O18]dizinc(II) dichloride

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.498964 (15)0.44126 (2)0.385526 (15)0.01346 (7)
Cl0.65088 (4)0.21840 (5)0.67527 (4)0.02150 (11)
O10.87749 (10)0.53912 (15)0.53455 (10)0.0196 (3)
O20.81912 (11)0.74399 (16)0.43401 (11)0.0224 (3)
O30.84961 (11)0.53008 (16)0.35162 (11)0.0220 (3)
O40.58556 (10)0.58286 (14)0.50926 (10)0.0148 (3)
N10.55061 (12)0.59639 (18)0.28969 (12)0.0153 (3)
H010.5192 (16)0.667 (2)0.3124 (16)0.011 (5)*
N20.41100 (13)0.30671 (18)0.26391 (12)0.0180 (3)
H020.3442 (15)0.328 (3)0.260 (2)0.029 (7)*
N30.63507 (12)0.31357 (17)0.43133 (12)0.0146 (3)
H030.6338 (19)0.295 (3)0.4958 (14)0.020 (6)*
C10.73659 (14)0.3908 (2)0.43370 (14)0.0153 (3)
H10.79520.31660.44060.018*
C20.73790 (14)0.4834 (2)0.33574 (14)0.0168 (4)
H20.71700.42270.27060.020*
C30.66890 (14)0.6228 (2)0.32190 (14)0.0166 (4)
H30.68870.68060.26450.020*
C40.51156 (17)0.5955 (2)0.17239 (15)0.0236 (4)
H4A0.56910.55530.14130.028*
H4B0.49770.69630.14710.028*
C50.40929 (17)0.5075 (2)0.13450 (15)0.0244 (4)
H5A0.38250.52040.05730.029*
H5B0.35280.54420.16860.029*
C60.42703 (18)0.3467 (2)0.15888 (15)0.0244 (4)
H6A0.37620.29010.10420.029*
H6B0.50170.32040.15550.029*
C70.42644 (16)0.1468 (2)0.28289 (16)0.0234 (4)
H7A0.44070.10190.21870.028*
H7B0.35780.10560.29320.028*
C80.51733 (17)0.1040 (2)0.37669 (16)0.0234 (4)
H8A0.49630.13200.44230.028*
H8B0.52490.00270.37710.028*
C90.62685 (16)0.1708 (2)0.37839 (16)0.0221 (4)
H9A0.68540.10640.41670.027*
H9B0.63510.18270.30530.027*
C100.88142 (15)0.6159 (2)0.44320 (16)0.0224 (4)
H100.95850.64510.44960.027*
C110.76778 (14)0.4913 (2)0.52973 (14)0.0157 (3)
H110.76630.43580.59520.019*
C120.69349 (14)0.6238 (2)0.52120 (14)0.0156 (3)
H120.71700.68500.58580.019*
C130.70556 (15)0.7096 (2)0.42425 (15)0.0175 (4)
H130.66260.80120.41890.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01175 (11)0.01631 (12)0.01290 (11)0.00067 (8)0.00410 (7)0.00177 (8)
Cl0.0173 (2)0.0245 (2)0.0222 (2)0.00080 (18)0.00380 (16)0.00437 (18)
O10.0105 (6)0.0274 (7)0.0207 (6)0.0029 (5)0.0031 (5)0.0053 (6)
O20.0169 (6)0.0222 (7)0.0283 (7)0.0061 (5)0.0056 (5)0.0051 (6)
O30.0155 (6)0.0307 (8)0.0224 (7)0.0001 (6)0.0099 (5)0.0047 (6)
O40.0114 (6)0.0189 (6)0.0152 (6)0.0028 (5)0.0053 (5)0.0023 (5)
N10.0142 (7)0.0164 (7)0.0148 (7)0.0016 (6)0.0024 (6)0.0018 (6)
N20.0172 (8)0.0199 (8)0.0164 (7)0.0002 (6)0.0030 (6)0.0022 (6)
N30.0173 (7)0.0139 (7)0.0131 (7)0.0008 (6)0.0047 (6)0.0006 (6)
C10.0120 (8)0.0175 (8)0.0165 (8)0.0024 (7)0.0036 (6)0.0018 (7)
C20.0140 (8)0.0220 (9)0.0155 (8)0.0016 (7)0.0059 (6)0.0014 (7)
C30.0161 (8)0.0190 (9)0.0154 (8)0.0003 (7)0.0049 (6)0.0057 (7)
C40.0267 (10)0.0272 (10)0.0153 (9)0.0022 (9)0.0016 (7)0.0047 (8)
C50.0247 (10)0.0294 (11)0.0151 (9)0.0004 (9)0.0028 (7)0.0018 (8)
C60.0304 (10)0.0272 (11)0.0159 (9)0.0036 (9)0.0059 (8)0.0049 (8)
C70.0223 (9)0.0199 (10)0.0249 (10)0.0044 (8)0.0006 (8)0.0029 (8)
C80.0277 (10)0.0142 (9)0.0256 (10)0.0030 (8)0.0009 (8)0.0004 (8)
C90.0204 (9)0.0168 (9)0.0272 (10)0.0039 (8)0.0019 (8)0.0055 (8)
C100.0138 (8)0.0295 (11)0.0247 (9)0.0034 (8)0.0063 (7)0.0064 (8)
C110.0100 (8)0.0206 (9)0.0165 (8)0.0036 (7)0.0034 (6)0.0035 (7)
C120.0135 (8)0.0179 (9)0.0158 (8)0.0035 (7)0.0039 (6)0.0013 (7)
C130.0140 (8)0.0162 (9)0.0227 (9)0.0027 (7)0.0049 (7)0.0011 (7)
Geometric parameters (Å, º) top
Zn—O4i1.9480 (13)C2—H21.0000
Zn—N32.0603 (16)C3—C131.532 (3)
Zn—N12.1074 (16)C3—H31.0000
Zn—N22.1128 (16)C4—C51.512 (3)
Zn—O42.1629 (13)C4—H4A0.9900
O1—C101.398 (2)C4—H4B0.9900
O1—C111.449 (2)C5—C61.524 (3)
O2—C101.413 (3)C5—H5A0.9900
O2—C131.453 (2)C5—H5B0.9900
O3—C101.410 (3)C6—H6A0.9900
O3—C21.450 (2)C6—H6B0.9900
O4—C121.395 (2)C7—C81.520 (3)
O4—Zni1.9480 (13)C7—H7A0.9900
N1—C31.481 (2)C7—H7B0.9900
N1—C41.492 (2)C8—C91.518 (3)
N1—H010.855 (17)C8—H8A0.9900
N2—C61.480 (2)C8—H8B0.9900
N2—C71.503 (3)C9—H9A0.9900
N2—H020.860 (18)C9—H9B0.9900
N3—C11.468 (2)C10—H101.0000
N3—C91.481 (2)C11—C121.533 (3)
N3—H030.862 (17)C11—H111.0000
C1—C111.533 (3)C12—C131.532 (3)
C1—C21.541 (2)C12—H121.0000
C1—H11.0000C13—H131.0000
C2—C31.544 (3)
O4i—Zn—N3107.23 (6)C5—C4—H4B109.0
O4i—Zn—N1143.00 (6)H4A—C4—H4B107.8
N3—Zn—N1101.68 (6)C4—C5—C6112.52 (17)
O4i—Zn—N2100.39 (6)C4—C5—H5A109.1
N3—Zn—N297.90 (6)C6—C5—H5A109.1
N1—Zn—N297.94 (6)C4—C5—H5B109.1
O4i—Zn—O479.09 (5)C6—C5—H5B109.1
N3—Zn—O483.57 (6)H5A—C5—H5B107.8
N1—Zn—O481.77 (6)N2—C6—C5112.98 (17)
N2—Zn—O4178.53 (6)N2—C6—H6A109.0
C10—O1—C11110.36 (13)C5—C6—H6A109.0
C10—O2—C13110.43 (14)N2—C6—H6B109.0
C10—O3—C2111.14 (14)C5—C6—H6B109.0
C12—O4—Zni130.20 (11)H6A—C6—H6B107.8
C12—O4—Zn123.92 (11)N2—C7—C8115.61 (16)
Zni—O4—Zn100.91 (5)N2—C7—H7A108.4
C3—N1—C4110.97 (14)C8—C7—H7A108.4
C3—N1—Zn112.49 (11)N2—C7—H7B108.4
C4—N1—Zn122.06 (12)C8—C7—H7B108.4
C3—N1—H01107.5 (14)H7A—C7—H7B107.4
C4—N1—H01106.9 (14)C9—C8—C7115.03 (17)
Zn—N1—H0194.5 (14)C9—C8—H8A108.5
C6—N2—C7110.89 (16)C7—C8—H8A108.5
C6—N2—Zn112.54 (12)C9—C8—H8B108.5
C7—N2—Zn115.45 (12)C7—C8—H8B108.5
C6—N2—H02103.8 (17)H8A—C8—H8B107.5
C7—N2—H02108.8 (18)N3—C9—C8109.34 (16)
Zn—N2—H02104.3 (17)N3—C9—H9A109.8
C1—N3—C9113.97 (14)C8—C9—H9A109.8
C1—N3—Zn113.58 (11)N3—C9—H9B109.8
C9—N3—Zn114.45 (11)C8—C9—H9B109.8
C1—N3—H03107.3 (16)H9A—C9—H9B108.3
C9—N3—H03105.3 (16)O1—C10—O3112.06 (17)
Zn—N3—H03100.7 (16)O1—C10—O2111.32 (16)
N3—C1—C11111.44 (14)O3—C10—O2110.97 (15)
N3—C1—C2115.85 (14)O1—C10—H10107.4
C11—C1—C2106.87 (15)O3—C10—H10107.4
N3—C1—H1107.4O2—C10—H10107.4
C11—C1—H1107.4O1—C11—C12109.22 (15)
C2—C1—H1107.4O1—C11—C1106.12 (14)
O3—C2—C1104.53 (14)C12—C11—C1112.92 (14)
O3—C2—C3106.13 (15)O1—C11—H11109.5
C1—C2—C3116.17 (15)C12—C11—H11109.5
O3—C2—H2109.9C1—C11—H11109.5
C1—C2—H2109.9O4—C12—C13109.76 (14)
C3—C2—H2109.9O4—C12—C11111.34 (15)
N1—C3—C13114.20 (15)C13—C12—C11106.95 (14)
N1—C3—C2113.91 (15)O4—C12—H12109.6
C13—C3—C2106.80 (15)C13—C12—H12109.6
N1—C3—H3107.2C11—C12—H12109.6
C13—C3—H3107.2O2—C13—C12109.54 (14)
C2—C3—H3107.2O2—C13—C3106.22 (15)
N1—C4—C5112.79 (16)C12—C13—C3112.30 (15)
N1—C4—H4A109.0O2—C13—H13109.6
C5—C4—H4A109.0C12—C13—H13109.6
N1—C4—H4B109.0C3—C13—H13109.6
O4i—Zn—O4—C12157.20 (16)O3—C2—C3—C1361.16 (17)
N3—Zn—O4—C1248.22 (13)C1—C2—C3—C1354.5 (2)
N1—Zn—O4—C1254.62 (13)C3—N1—C4—C5154.52 (17)
O4i—Zn—O4—Zni0.0Zn—N1—C4—C518.2 (2)
N3—Zn—O4—Zni108.98 (6)N1—C4—C5—C665.5 (2)
N1—Zn—O4—Zni148.18 (7)C7—N2—C6—C5178.47 (16)
O4i—Zn—N1—C3111.81 (13)Zn—N2—C6—C550.5 (2)
N3—Zn—N1—C329.17 (13)C4—C5—C6—N288.6 (2)
N2—Zn—N1—C3128.99 (12)C6—N2—C7—C8119.12 (19)
O4—Zn—N1—C352.47 (12)Zn—N2—C7—C810.4 (2)
O4i—Zn—N1—C4112.43 (15)N2—C7—C8—C952.5 (2)
N3—Zn—N1—C4106.59 (15)C1—N3—C9—C8177.71 (15)
N2—Zn—N1—C46.76 (15)Zn—N3—C9—C844.62 (18)
O4—Zn—N1—C4171.78 (15)C7—C8—C9—N387.3 (2)
O4i—Zn—N2—C6156.58 (13)C11—O1—C10—O361.4 (2)
N3—Zn—N2—C694.19 (14)C11—O1—C10—O263.6 (2)
N1—Zn—N2—C68.86 (14)C2—O3—C10—O162.59 (19)
O4i—Zn—N2—C774.73 (14)C2—O3—C10—O262.54 (19)
N3—Zn—N2—C734.50 (14)C13—O2—C10—O162.70 (19)
N1—Zn—N2—C7137.55 (13)C13—O2—C10—O362.85 (18)
O4i—Zn—N3—C1129.11 (11)C10—O1—C11—C1260.62 (19)
N1—Zn—N3—C127.52 (13)C10—O1—C11—C161.39 (19)
N2—Zn—N3—C1127.38 (12)N3—C1—C11—O1169.34 (14)
O4—Zn—N3—C152.66 (11)C2—C1—C11—O163.18 (17)
O4i—Zn—N3—C997.62 (13)N3—C1—C11—C1271.04 (19)
N1—Zn—N3—C9105.75 (13)C2—C1—C11—C1256.44 (18)
N2—Zn—N3—C95.90 (14)Zni—O4—C12—C13147.22 (12)
O4—Zn—N3—C9174.07 (13)Zn—O4—C12—C1362.66 (18)
C9—N3—C1—C11151.50 (15)Zni—O4—C12—C1194.55 (17)
Zn—N3—C1—C1175.00 (16)Zn—O4—C12—C1155.56 (18)
C9—N3—C1—C286.05 (19)O1—C11—C12—O4176.04 (13)
Zn—N3—C1—C247.45 (18)C1—C11—C12—O458.22 (19)
C10—O3—C2—C162.02 (18)O1—C11—C12—C1356.13 (18)
C10—O3—C2—C361.29 (18)C1—C11—C12—C1361.69 (18)
N3—C1—C2—O3172.28 (15)C10—O2—C13—C1258.95 (19)
C11—C1—C2—O362.88 (17)C10—O2—C13—C362.55 (18)
N3—C1—C2—C371.2 (2)O4—C12—C13—O2176.40 (14)
C11—C1—C2—C353.7 (2)C11—C12—C13—O255.49 (19)
C4—N1—C3—C13146.22 (16)O4—C12—C13—C358.6 (2)
Zn—N1—C3—C1373.08 (17)C11—C12—C13—C362.28 (19)
C4—N1—C3—C290.69 (18)N1—C3—C13—O2171.23 (14)
Zn—N1—C3—C250.01 (17)C2—C3—C13—O261.90 (18)
O3—C2—C3—N1171.81 (14)N1—C3—C13—C1269.0 (2)
C1—C2—C3—N172.5 (2)C2—C3—C13—C1257.82 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···Cli0.86 (2)2.45 (2)3.2017 (17)148 (2)
N2—H02···Clii0.86 (2)2.48 (2)3.2382 (18)148 (2)
N3—H03···Cl0.86 (2)2.41 (2)3.2622 (16)172 (2)
C10—H10···O1iii1.002.663.331 (2)125
C9—H9B···O3iv0.992.533.350 (2)140
C8—H8B···Clv0.992.953.634 (2)127
C5—H5B···Cli0.993.003.751 (2)133
C11—H11···Cl1.002.833.6770 (19)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C13H22N3O4)2]Cl2
Mr770.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)143
a, b, c (Å)12.706 (2), 9.2379 (16), 13.050 (2)
β (°) 103.849 (12)
V3)1487.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.6 × 0.5 × 0.25
Data collection
DiffractometerStoe STADI-4
diffractometer
Absorption correctionψ scans
(XEMP; Siemens, 1994)
Tmin, Tmax0.611, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3862, 3416, 3146
Rint0.017
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.05
No. of reflections3416
No. of parameters211
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Zn—O4i1.9480 (13)Zn—N22.1128 (16)
Zn—N32.0603 (16)Zn—O42.1629 (13)
Zn—N12.1074 (16)
O4i—Zn—N3107.23 (6)C12—O4—Zn123.92 (11)
O4i—Zn—N1143.00 (6)Zni—O4—Zn100.91 (5)
N3—Zn—N1101.68 (6)C3—N1—C4110.97 (14)
O4i—Zn—N2100.39 (6)C3—N1—Zn112.49 (11)
N3—Zn—N297.90 (6)C4—N1—Zn122.06 (12)
N1—Zn—N297.94 (6)C6—N2—C7110.89 (16)
O4i—Zn—O479.09 (5)C6—N2—Zn112.54 (12)
N3—Zn—O483.57 (6)C7—N2—Zn115.45 (12)
N1—Zn—O481.77 (6)C1—N3—C9113.97 (14)
N2—Zn—O4178.53 (6)C1—N3—Zn113.58 (11)
C12—O4—Zni130.20 (11)C9—N3—Zn114.45 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···Cli0.855 (17)2.445 (18)3.2017 (17)147.8 (18)
N2—H02···Clii0.860 (18)2.48 (2)3.2382 (18)148 (2)
N3—H03···Cl0.862 (17)2.407 (18)3.2622 (16)172 (2)
C10—H10···O1iii1.002.663.331 (2)125
C9—H9B···O3iv0.992.533.350 (2)140
C8—H8B···Clv0.992.953.634 (2)127
C5—H5B···Cli0.993.003.751 (2)133
C11—H11···Cl1.002.833.6770 (19)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds