Download citation
Download citation
link to html
The title complex, [Ni(pyet)2(H2O)2](sac)2 (sac is the saccharinate anion, C7H4NO3S, and pyet is 2-pyridyl­ethanol, C7H9NO), is built of discrete sac and [Ni(H2O)2(pyet)2]2+ ions. The Co2+ ion sits on a centre of symmetry and exhibits a distorted octahedral geometry, formed by two bidentate pyet and two water mol­ecules. The crystal structure is stabilized by hydrogen-bonding and weak aromatic π–π-stacking interactions between the planar sac ions, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680202007X/bt6211sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680202007X/bt6211Isup2.hkl
Contains datablock I

CCDC reference: 202278

Key indicators

  • Single-crystal X-ray study
  • T = 133 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.032
  • wR factor = 0.096
  • Data-to-parameter ratio = 19.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The structure of the title complex, (I), is shown in Fig. 1. The nickel(II) complex is isostructural with the corresponding cobalt(II) complex and consists of a complex cation, [Ni(H2O)2(pyet)2]2+, and two saccharinate (sac) anions. The crystal is centrosymmetric and the NiII ion located at the centre of symmetry is coordinated by a pair of neutral 2-pyridylethanol (pyet) ligands and two water molecules having distorted octahedral geometry. The sac ions are not in the primary coordination sphere, being as a counter-ion. Two pyet ligands are chelated to the NiII ion through the N and hydroxyl O atoms, forming two symmetrically six-membered chelate rings. The two pyet ligands form the equatorial plane of the coordination octahedron, while two water molecules occupy the axial positions with a trans configuration.

The crystal packing is shown in Fig. 2. Packing of molecules in (I) is very similar to its corresponding cobalt(II) complex (Yilmaz et al., 2002). The discrete cations and anions are linked by hydrogen bonds, as well as ππ interactions. The parallel stacking of pairs of the sac ions results in weak ππ interactions (Cg···Cg > 4.0 Å). The H atoms of the water molecules (O4) and hydroxyl group (O3) of pyet form O—H···O hydrogen bonds with the sulfonyl (O1) and carbonyl (O21) O atoms of neighboring sac anions. Additionally, two weak C—H···O interactions between H atoms of the py ring and the carbonyl and sulfonyl O atoms of the adjacent sac ions occur. The ions are held together by hydrogen bonds and weak ππ interactions, creating a three-dimensional network.

Experimental top

Previously prepared [Ni(sac)2(H2O)4]·2H2O (1.0 mmol, 0.53 g) was dissolved in methanol (30 ml) at 303 K with stirring. Pyet (0.25 g, 2.0 mmol) was then added to the solution dropwise. The resulting solution was allowed to evaporate slowly for crystallization at room temperature. Suitable single crystals obtained within a week were collected by suction filtration, washed with acetone and dried in air.

Refinement top

H atoms of the hydroxyl group and water molecules were refined freely, while H atoms bonded to carbon were included using a riding model, starting from calculated positions.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A molecular view of [Ni(H2O)2(pyet)2](sac)2 (40% displacement ellipsoids). [Symmetry code: (i) −x, 1 − y, −z.]
[Figure 2] Fig. 2. Packing diagram of [Ni(H2O)2(pyet)2](sac)2, showing the hydrogen-bonding scheme.
trans-Diaquabis(2-pyridylethanol-N,O)nickel(II) disaccharinate top
Crystal data top
[Ni(C7H9NO)2(H2O)2]·(C7H4NO3S)2F(000) = 732
Mr = 705.39Dx = 1.617 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8009 (6) ÅCell parameters from 5714 reflections
b = 8.7664 (6) Åθ = 2.2–30.5°
c = 19.0840 (14) ŵ = 0.88 mm1
β = 100.262 (3)°T = 133 K
V = 1448.82 (18) Å3Irregular, pale-blue
Z = 20.24 × 0.15 × 0.13 mm
Data collection top
Bruker SMART 1000CCD
diffractometer
4249 independent reflections
Radiation source: fine-focus sealed tube3604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.192 pixels mm-1θmax = 30.0°, θmin = 2.2°
ω and ψ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1212
Tmin = 0.826, Tmax = 0.928l = 2626
25119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2009P]
where P = (Fo2 + 2Fc2)/3
4249 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(C7H9NO)2(H2O)2]·(C7H4NO3S)2V = 1448.82 (18) Å3
Mr = 705.39Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8009 (6) ŵ = 0.88 mm1
b = 8.7664 (6) ÅT = 133 K
c = 19.0840 (14) Å0.24 × 0.15 × 0.13 mm
β = 100.262 (3)°
Data collection top
Bruker SMART 1000CCD
diffractometer
4249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3604 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.928Rint = 0.030
25119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.04 e Å3
4249 reflectionsΔρmin = 0.28 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.50000.00000.01342 (8)
S10.54586 (4)0.28708 (4)0.132706 (18)0.01640 (9)
N10.40479 (16)0.29573 (15)0.06600 (7)0.0197 (3)
N20.02723 (14)0.34582 (14)0.08366 (6)0.0157 (2)
O10.68479 (14)0.35220 (13)0.11455 (6)0.0250 (3)
O20.50389 (15)0.34895 (14)0.19650 (6)0.0254 (3)
O30.03462 (14)0.67465 (13)0.06800 (6)0.0191 (2)
H30.105 (3)0.731 (3)0.0523 (14)0.049 (8)*
O40.23567 (13)0.54793 (13)0.01537 (6)0.0179 (2)
H4A0.261 (3)0.578 (3)0.0182 (12)0.028 (6)*
H4B0.290 (3)0.473 (3)0.0285 (13)0.037 (7)*
O210.24888 (14)0.13046 (14)0.00756 (6)0.0252 (3)
C110.41984 (19)0.12674 (19)0.07775 (9)0.0236 (3)
H110.34040.16670.04220.028*
C120.5172 (2)0.22303 (19)0.12350 (9)0.0261 (3)
H120.50430.33040.11900.031*
C130.6332 (2)0.16376 (19)0.17576 (9)0.0246 (3)
H130.69830.23170.20620.030*
C140.65568 (19)0.00735 (17)0.18432 (9)0.0202 (3)
H140.73440.03330.22000.024*
C150.55770 (17)0.08643 (17)0.13824 (8)0.0166 (3)
C160.44254 (18)0.02906 (17)0.08569 (8)0.0176 (3)
C210.35498 (18)0.15554 (18)0.04337 (8)0.0189 (3)
C310.01567 (19)0.19835 (18)0.06905 (9)0.0212 (3)
H310.05810.17210.02130.025*
C320.0007 (2)0.08472 (19)0.12012 (10)0.0266 (3)
H320.03300.01660.10760.032*
C330.0627 (2)0.1215 (2)0.19034 (10)0.0291 (4)
H330.07630.04600.22660.035*
C340.1053 (2)0.2722 (2)0.20562 (9)0.0251 (3)
H340.14920.30050.25300.030*
C350.08411 (18)0.38188 (18)0.15212 (8)0.0193 (3)
C360.1156 (2)0.54779 (19)0.16934 (8)0.0227 (3)
H36A0.20320.58220.14710.027*
H36B0.14600.55970.22150.027*
C370.0239 (2)0.64808 (19)0.14314 (8)0.0238 (3)
H37A0.11890.59720.15220.029*
H37B0.01310.74650.16900.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01362 (13)0.01412 (13)0.01219 (13)0.00042 (9)0.00140 (9)0.00021 (8)
S10.01643 (17)0.01530 (17)0.01736 (17)0.00079 (12)0.00272 (13)0.00033 (12)
N10.0195 (6)0.0179 (6)0.0204 (6)0.0047 (5)0.0003 (5)0.0011 (5)
N20.0140 (5)0.0180 (6)0.0147 (5)0.0003 (4)0.0020 (4)0.0009 (4)
O10.0203 (6)0.0249 (6)0.0301 (6)0.0034 (5)0.0049 (5)0.0066 (5)
O20.0298 (6)0.0245 (6)0.0222 (5)0.0019 (5)0.0054 (5)0.0062 (4)
O30.0220 (5)0.0189 (5)0.0150 (5)0.0046 (4)0.0003 (4)0.0009 (4)
O40.0157 (5)0.0178 (5)0.0198 (5)0.0002 (4)0.0023 (4)0.0037 (4)
O210.0213 (6)0.0278 (6)0.0236 (5)0.0058 (5)0.0037 (5)0.0046 (5)
C110.0218 (8)0.0200 (7)0.0280 (8)0.0007 (6)0.0020 (6)0.0037 (6)
C120.0296 (9)0.0159 (7)0.0330 (8)0.0013 (6)0.0064 (7)0.0006 (6)
C130.0254 (8)0.0219 (7)0.0267 (8)0.0049 (6)0.0049 (6)0.0061 (6)
C140.0196 (7)0.0214 (7)0.0193 (7)0.0020 (6)0.0025 (6)0.0025 (5)
C150.0162 (7)0.0165 (6)0.0176 (6)0.0008 (5)0.0043 (5)0.0008 (5)
C160.0166 (7)0.0178 (6)0.0187 (6)0.0022 (5)0.0037 (5)0.0002 (5)
C210.0177 (7)0.0213 (7)0.0178 (6)0.0049 (6)0.0031 (5)0.0014 (5)
C310.0191 (7)0.0209 (7)0.0232 (7)0.0006 (6)0.0030 (6)0.0015 (6)
C320.0263 (8)0.0190 (7)0.0340 (9)0.0012 (6)0.0038 (7)0.0058 (6)
C330.0266 (9)0.0274 (8)0.0322 (9)0.0000 (7)0.0020 (7)0.0086 (7)
C340.0246 (8)0.0295 (8)0.0206 (7)0.0005 (6)0.0024 (6)0.0061 (6)
C350.0162 (7)0.0224 (7)0.0191 (7)0.0010 (5)0.0024 (5)0.0017 (6)
C360.0256 (8)0.0230 (7)0.0177 (7)0.0012 (6)0.0007 (6)0.0004 (6)
C370.0303 (9)0.0214 (7)0.0197 (7)0.0037 (6)0.0044 (6)0.0013 (6)
Geometric parameters (Å, º) top
Ni—O32.0645 (11)C13—C141.391 (2)
Ni—N22.0729 (12)C13—H130.9500
Ni—O42.0851 (11)C14—C151.387 (2)
S1—O21.4398 (12)C14—H140.9500
S1—O11.4463 (12)C15—C161.387 (2)
S1—N11.6138 (13)C16—C211.501 (2)
S1—C151.7641 (15)C31—C321.383 (2)
N1—C211.350 (2)C31—H310.9500
N2—C351.3507 (19)C32—C331.395 (3)
N2—C311.3616 (19)C32—H320.9500
O3—C371.4391 (19)C33—C341.390 (3)
O3—H30.81 (3)C33—H330.9500
O4—H4A0.76 (2)C34—C351.391 (2)
O4—H4B0.82 (3)C34—H340.9500
O21—C211.2417 (18)C35—C361.506 (2)
C11—C161.385 (2)C36—C371.520 (2)
C11—C121.394 (2)C36—H36A0.9900
C11—H110.9500C36—H36B0.9900
C12—C131.394 (2)C37—H37A0.9900
C12—H120.9500C37—H37B0.9900
O3i—Ni—O3180.00C14—C15—C16122.37 (14)
O3—Ni—N2i89.48 (5)C14—C15—S1130.73 (12)
O3—Ni—N290.52 (5)C16—C15—S1106.89 (11)
N2i—Ni—N2180.00C11—C16—C15120.62 (14)
O3i—Ni—O489.05 (5)C11—C16—C21128.27 (14)
O3—Ni—O490.95 (5)C15—C16—C21111.11 (13)
N2i—Ni—O487.28 (5)O21—C21—N1124.60 (14)
N2—Ni—O492.72 (5)O21—C21—C16122.19 (14)
O4—Ni—O4i180.00N1—C21—C16113.20 (13)
O2—S1—O1114.15 (8)N2—C31—C32123.45 (15)
O2—S1—N1111.84 (7)N2—C31—H31118.3
O1—S1—N1110.91 (7)C32—C31—H31118.3
O2—S1—C15110.26 (7)C31—C32—C33118.82 (16)
O1—S1—C15111.37 (7)C31—C32—H32120.6
N1—S1—C1597.06 (7)C33—C32—H32120.6
C21—N1—S1111.72 (10)C34—C33—C32117.92 (16)
C35—N2—C31117.50 (13)C34—C33—H33121.0
C35—N2—Ni124.36 (10)C32—C33—H33121.0
C31—N2—Ni118.13 (10)C33—C34—C35120.48 (15)
C37—O3—Ni121.03 (9)C33—C34—H34119.8
C37—O3—H3112.3 (19)C35—C34—H34119.8
Ni—O3—H3114.3 (19)N2—C35—C34121.77 (15)
Ni—O4—H4A112.5 (17)N2—C35—C36117.34 (13)
Ni—O4—H4B113.0 (17)C34—C35—C36120.81 (14)
H4A—O4—H4B107 (2)C35—C36—C37112.35 (13)
C16—C11—C12117.92 (15)C35—C36—H36A109.1
C16—C11—H11121.0C37—C36—H36A109.1
C12—C11—H11121.0C35—C36—H36B109.1
C11—C12—C13120.83 (15)C37—C36—H36B109.1
C11—C12—H12119.6H36A—C36—H36B107.9
C13—C12—H12119.6O3—C37—C36109.10 (13)
C14—C13—C12121.47 (15)O3—C37—H37A109.9
C14—C13—H13119.3C36—C37—H37A109.9
C12—C13—H13119.3O3—C37—H37B109.9
C15—C14—C13116.78 (15)C36—C37—H37B109.9
C15—C14—H14121.6H37A—C37—H37B108.3
C13—C14—H14121.6
O2—S1—N1—C21114.55 (12)C12—C11—C16—C21179.61 (16)
O1—S1—N1—C21116.77 (12)C14—C15—C16—C110.7 (2)
C15—S1—N1—C210.64 (13)S1—C15—C16—C11178.36 (13)
O3i—Ni—N2—C35150.16 (13)C14—C15—C16—C21179.56 (15)
O3—Ni—N2—C3529.84 (13)S1—C15—C16—C211.36 (16)
O4—Ni—N2—C3561.14 (13)S1—N1—C21—O21179.22 (13)
O4i—Ni—N2—C35118.86 (13)S1—N1—C21—C160.09 (17)
O3i—Ni—N2—C3130.22 (12)C11—C16—C21—O212.0 (3)
O3—Ni—N2—C31149.78 (12)C15—C16—C21—O21178.30 (15)
O4—Ni—N2—C31119.24 (12)C11—C16—C21—N1178.67 (16)
O4i—Ni—N2—C3160.76 (12)C15—C16—C21—N11.02 (19)
N2i—Ni—O3—C37177.05 (12)C35—N2—C31—C321.5 (2)
N2—Ni—O3—C372.95 (12)Ni—N2—C31—C32178.88 (13)
O4—Ni—O3—C3789.77 (12)N2—C31—C32—C330.5 (3)
O4i—Ni—O3—C3790.23 (12)C31—C32—C33—C341.1 (3)
C16—C11—C12—C130.3 (3)C32—C33—C34—C350.3 (3)
C11—C12—C13—C140.2 (3)C31—N2—C35—C342.9 (2)
C12—C13—C14—C150.3 (3)Ni—N2—C35—C34177.47 (12)
C13—C14—C15—C160.2 (2)C31—N2—C35—C36173.69 (15)
C13—C14—C15—S1178.63 (13)Ni—N2—C35—C365.9 (2)
O2—S1—C15—C1463.73 (17)C33—C34—C35—N22.4 (3)
O1—S1—C15—C1464.06 (17)C33—C34—C35—C36174.09 (16)
N1—S1—C15—C14179.83 (16)N2—C35—C36—C3752.9 (2)
O2—S1—C15—C16115.24 (11)C34—C35—C36—C37123.75 (16)
O1—S1—C15—C16116.97 (11)Ni—O3—C37—C3643.05 (17)
N1—S1—C15—C161.20 (12)C35—C36—C37—O379.29 (17)
C12—C11—C16—C150.7 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21i0.81 (3)1.85 (3)2.6515 (16)172 (3)
O4—H4A···O1ii0.76 (2)2.07 (2)2.8325 (17)175 (2)
C32—H32···O21iii0.952.643.357 (2)133
C33—H33···O2iv0.952.453.342 (2)156
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H9NO)2(H2O)2]·(C7H4NO3S)2
Mr705.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)133
a, b, c (Å)8.8009 (6), 8.7664 (6), 19.0840 (14)
β (°) 100.262 (3)
V3)1448.82 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.24 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART 1000CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.826, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
25119, 4249, 3604
Rint0.030
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.05
No. of reflections4249
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Ni—O32.0645 (11)Ni—O42.0851 (11)
Ni—N22.0729 (12)
O3—Ni—N2i89.48 (5)O3—Ni—O490.95 (5)
O3—Ni—N290.52 (5)N2i—Ni—O487.28 (5)
O3i—Ni—O489.05 (5)N2—Ni—O492.72 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21i0.81 (3)1.85 (3)2.6515 (16)172 (3)
O4—H4A···O1ii0.76 (2)2.07 (2)2.8325 (17)175 (2)
C32—H32···O21iii0.952.643.357 (2)133
C33—H33···O2iv0.952.453.342 (2)156
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds