Download citation
Download citation
link to html
The central dihydropyridine ring in the title compound, C26H33NO3, adopts a boat conformation, while the outer rings adopt sofa conformations. The packing is stabilized by O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680201958X/bt6199sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680201958X/bt6199Isup2.hkl
Contains datablock I

CCDC reference: 202314

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.059
  • wR factor = 0.180
  • Data-to-parameter ratio = 14.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Acridine derivatives exhibit a wide spectrum of biological activities, such as antibacterial (Acheson, 1956), mutagenic, antitumour (Talacki et al., 1974) and antiameobic (Prasad Krishna et al., 1984). Acridines bind to DNA by intercalation (Lerman, 1961; Karle et al., 1980; Nandi et al., 1990; Reddy et al., 1979; Sakore et al., 1979). The use of decahydroacridine-1,8-diones as photo-sensitizers is also well known (Timpe et al., 1993). Acridinediones act as laser dyes whose laser activity has been studied (Murugan et al., 1998). In acridine-1,8-diones, the electron delocalization is along a stretch of nine non-H atoms which facilitate it to exhibit florescence and laser activity (Selladurai et al., 1990). The derivatives of acridine are buckled and this buckling was referred to for their biological properties (Glusker, 1972). The effctiveness of lasing can be controlled by the substituents at 9- and 10-positions of the acridine chromophere. The present study of the title compound, (I), is a part of a series of investigations on the crystal structures of acridinedione derivatives (Jeyakanthan et al., 2000).

The bond distances of the keto groups of the acridine moiety and the hydroxyl group oon the phenyl ring are in good agreement with values observed in related structures (Allen et al., 1987; Ganesh et al., 1998; Jeyakanthan et al., 2000). The bond lengths in the pyridine ring range from 1.352 (3) to 1.501 (3) Å and show the alternately greater and lesser degree of single- and double-bond character observed in related acridine structures (Selladurai et al., 1990; Sivaraman et al., 1994). The dihedral angle between the two outer rings is 13.05 (8)° and shows buckling of the acridine nucleus. The acridine moiety is folded about the line passing through atoms C2 and N. The dihedral angle between the two halves C2–C8/N and C2/C17–C22/N is 15.21 (5)°.

The sum of the angles around N is 359.6 (2)° and this is an indication of sp2 hybridization. The bond lengths involving atom N conform to standard Csp2—Nsp2 bonds. The puckering amplitude of the central pyridine ring is small owing to the π-conjugation along C3—C8—N—C17—C22, as indicated by the distances C3—C8, C8—N, N—C17 and C17—C22 (Table 1). The planar phenyl ring is orthogonal to the pyridine ring, the dihedral angle between them being 39.85 (8)°.

The deviations of atoms O1 and O2 from the mean planes through rings C and A are 0.0585 (2) and −0.1894 (2) Å, respectively. The C4—C5—C6—C23 and C4—C5—C6—C24 torsion angles show that methyl atoms C23 and C24 are axial and equatorial, respectively, to ring C. The C21—C20—C19—C26 and C21—C20—C19—C25 torsion angles show that methyl atoms C26 and C25 are axial and equatorial, respectively, to ring A.

The total puckering amplitudes (Cremer & Pople, 1975) of rings A, B and C give a quantitative evaluation of puckering and asymmetry parameters. The asymmetry parameters (Nardelli, 1983) are QT = 0.5066 (5) Å and ΔC2(C17—C22) = 0.0365 (1)°, revealing a sofa conformation for ring A; QT = 0.2746 (3) Å, ΔC2(C2—C22) = 0.0590 (4)° and ΔCS(C2) = 0.0216 (2)° for ring B, revealing a boat conformation; QT = 0.4707 (9) Å and ΔCS(C3) = 0.0233 (4)° for ring C, revealing a sofa conformation. In addition to van der Waals interactions, the packing in the crystal is stabilized by O—H···O hydrogen bonds.

Experimental top

A solution of 2,2'-ethylenebis(dimedone) (1.5 g, 0.0049 mol) in acetic acid was refluxed for 13 h. The reaction mixture was poured on to ice, and the brown solid obtained was filtered off, dried and recrystallized from a mixture of chloroform and methanol (1:1) to afford the title compound (1.2 g 60.3%)

Refinement top

All H atoms were fixed geometrically and allowed to ride on their attached non-H atoms, with C—H = 0.96 Å. The torsion angles about C—CH3 and C—OH bonds were refined with a rotating-group model.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of (I), shown with 30% probability displacement ellipsoids.
10-[2-(4-Hydroxyphenyl)ethyl]-3,3,6,6,9-pentamethyl-3,4,6,7,9,10-hexahydro- acridine-1,8(2H,5H)-dione top
Crystal data top
C26H33NO3F(000) = 880
Mr = 407.53Dx = 1.214 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.350 (2) ÅCell parameters from 25 reflections
b = 15.5152 (15) Åθ = 2.1–25.0°
c = 13.084 (2) ŵ = 0.08 mm1
β = 104.677 (14)°T = 293 K
V = 2228.9 (6) Å3Monoclinic, orange
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 1313
ω scansk = 018
4093 measured reflectionsl = 015
3914 independent reflections3 standard reflections every 120 min
2417 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1125P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3914 reflectionsΔρmax = 0.24 e Å3
278 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C26H33NO3V = 2228.9 (6) Å3
Mr = 407.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.350 (2) ŵ = 0.08 mm1
b = 15.5152 (15) ÅT = 293 K
c = 13.084 (2) Å0.30 × 0.30 × 0.25 mm
β = 104.677 (14)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.043
4093 measured reflections3 standard reflections every 120 min
3914 independent reflections intensity decay: <2%
2417 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
3914 reflectionsΔρmin = 0.30 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.42572 (17)0.15163 (12)0.21319 (15)0.0339 (5)
O10.6957 (2)0.00488 (13)0.06414 (17)0.0596 (6)
O20.63288 (19)0.30265 (13)0.00153 (17)0.0607 (6)
O30.6541 (2)0.44067 (15)0.55095 (17)0.0705 (7)
H30.70960.44750.52200.106*
C10.7489 (2)0.17406 (19)0.2094 (2)0.0534 (8)
H1A0.73050.18120.27650.080*
H1B0.78600.22570.19180.080*
H1C0.80400.12660.21300.080*
C20.6321 (2)0.15621 (16)0.12501 (19)0.0371 (6)
H20.65300.14990.05710.045*
C30.5722 (2)0.07435 (15)0.14648 (19)0.0344 (6)
C40.6176 (2)0.00604 (17)0.1151 (2)0.0414 (6)
C50.5699 (3)0.08906 (17)0.1441 (2)0.0487 (7)
H5A0.63590.13060.15990.058*
H5B0.50870.11040.08350.058*
C60.5141 (2)0.08385 (16)0.2382 (2)0.0415 (6)
C70.4248 (2)0.00900 (15)0.2188 (2)0.0406 (6)
H7A0.35560.02380.16100.049*
H7B0.39500.00060.28130.049*
C80.4785 (2)0.07451 (15)0.19291 (18)0.0326 (6)
C90.3301 (2)0.14960 (16)0.2717 (2)0.0376 (6)
H9A0.27740.10050.24790.045*
H9B0.28090.20130.25520.045*
C100.3810 (3)0.14373 (17)0.3912 (2)0.0459 (7)
H10A0.31370.13850.42390.055*
H10B0.42980.09180.40750.055*
C110.4575 (2)0.21951 (17)0.4385 (2)0.0415 (6)
C120.4068 (3)0.28729 (18)0.4833 (2)0.0496 (7)
H120.32630.28360.48730.060*
C130.4740 (3)0.3592 (2)0.5214 (2)0.0538 (8)
H130.43950.40300.55270.065*
C140.5915 (3)0.3668 (2)0.5136 (2)0.0495 (7)
C150.6443 (3)0.3005 (2)0.4720 (2)0.0535 (8)
H150.72500.30450.46870.064*
C160.5768 (3)0.2278 (2)0.4349 (2)0.0498 (7)
H160.61320.18320.40660.060*
C170.4528 (2)0.22768 (15)0.16642 (18)0.0319 (6)
C180.3797 (2)0.30651 (15)0.1756 (2)0.0391 (6)
H18A0.37710.31310.24870.047*
H18B0.29680.29790.13390.047*
C190.4290 (3)0.39042 (17)0.1393 (2)0.0458 (7)
C200.4617 (3)0.37153 (18)0.0353 (2)0.0514 (8)
H20A0.38860.35520.01760.062*
H20B0.49380.42340.01100.062*
C210.5535 (2)0.30106 (16)0.0468 (2)0.0422 (6)
C220.5433 (2)0.22864 (16)0.11520 (19)0.0350 (6)
C230.6129 (3)0.0697 (2)0.3398 (2)0.0586 (8)
H23A0.66750.11800.35190.088*
H23B0.57610.06400.39790.088*
H23C0.65730.01810.33370.088*
C240.4451 (3)0.16686 (18)0.2474 (3)0.0599 (8)
H24A0.38060.17470.18450.090*
H24B0.41120.16310.30750.090*
H24C0.50000.21490.25600.090*
C250.3271 (3)0.4583 (2)0.1211 (3)0.0719 (11)
H25A0.35490.51060.09580.108*
H25B0.30600.46940.18640.108*
H25C0.25690.43720.06980.108*
C260.5387 (3)0.4236 (2)0.2207 (3)0.0646 (9)
H26A0.60190.38100.23330.097*
H26B0.51640.43560.28530.097*
H26C0.56740.47550.19510.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0392 (11)0.0291 (11)0.0404 (11)0.0029 (9)0.0228 (9)0.0045 (9)
O10.0692 (14)0.0497 (12)0.0763 (15)0.0159 (10)0.0485 (12)0.0035 (10)
O20.0688 (14)0.0553 (13)0.0760 (14)0.0059 (10)0.0517 (12)0.0170 (11)
O30.0837 (17)0.0736 (16)0.0608 (14)0.0373 (13)0.0305 (12)0.0098 (12)
C10.0458 (16)0.0512 (18)0.0667 (19)0.0034 (14)0.0207 (14)0.0014 (15)
C20.0418 (14)0.0365 (14)0.0407 (14)0.0021 (11)0.0247 (12)0.0016 (11)
C30.0406 (14)0.0301 (13)0.0372 (13)0.0039 (11)0.0184 (11)0.0025 (10)
C40.0459 (15)0.0411 (15)0.0401 (15)0.0100 (12)0.0164 (12)0.0031 (12)
C50.0660 (19)0.0338 (15)0.0535 (17)0.0061 (13)0.0284 (15)0.0021 (13)
C60.0537 (16)0.0295 (14)0.0457 (15)0.0041 (12)0.0208 (13)0.0061 (12)
C70.0489 (15)0.0319 (14)0.0462 (15)0.0018 (12)0.0218 (13)0.0019 (11)
C80.0371 (13)0.0301 (13)0.0324 (13)0.0028 (10)0.0124 (10)0.0034 (10)
C90.0388 (14)0.0320 (13)0.0505 (15)0.0003 (11)0.0271 (12)0.0042 (11)
C100.0604 (17)0.0403 (15)0.0473 (16)0.0062 (13)0.0328 (14)0.0009 (12)
C110.0503 (15)0.0446 (16)0.0356 (13)0.0053 (13)0.0224 (12)0.0018 (12)
C120.0535 (17)0.0519 (18)0.0533 (17)0.0080 (14)0.0317 (14)0.0029 (14)
C130.065 (2)0.0492 (18)0.0557 (18)0.0085 (15)0.0319 (15)0.0076 (14)
C140.0591 (18)0.0541 (18)0.0373 (15)0.0154 (15)0.0157 (13)0.0047 (13)
C150.0444 (16)0.072 (2)0.0480 (17)0.0049 (15)0.0183 (13)0.0081 (15)
C160.0529 (17)0.0536 (18)0.0488 (16)0.0032 (15)0.0239 (13)0.0010 (14)
C170.0376 (13)0.0275 (13)0.0332 (13)0.0019 (11)0.0138 (10)0.0014 (10)
C180.0438 (14)0.0337 (14)0.0473 (15)0.0036 (12)0.0253 (12)0.0052 (12)
C190.0585 (18)0.0293 (14)0.0596 (17)0.0040 (12)0.0335 (15)0.0052 (13)
C200.0664 (19)0.0402 (16)0.0564 (18)0.0063 (14)0.0318 (15)0.0166 (14)
C210.0493 (15)0.0370 (15)0.0471 (15)0.0000 (12)0.0252 (13)0.0062 (12)
C220.0379 (13)0.0331 (14)0.0386 (13)0.0003 (11)0.0180 (11)0.0019 (11)
C230.067 (2)0.059 (2)0.0490 (18)0.0064 (16)0.0132 (15)0.0141 (15)
C240.073 (2)0.0353 (16)0.079 (2)0.0011 (14)0.0331 (17)0.0093 (15)
C250.084 (2)0.0409 (17)0.110 (3)0.0230 (17)0.058 (2)0.0227 (18)
C260.081 (2)0.0451 (18)0.075 (2)0.0124 (16)0.0341 (19)0.0079 (16)
Geometric parameters (Å, º) top
N—C81.393 (3)C11—C121.397 (4)
N—C171.399 (3)C12—C131.372 (4)
N—C91.478 (3)C12—H120.9300
O1—C41.237 (3)C13—C141.368 (4)
O2—C211.225 (3)C13—H130.9300
O3—C141.372 (3)C14—C151.371 (4)
O3—H30.8200C15—C161.381 (4)
C1—C21.520 (4)C15—H150.9300
C1—H1A0.9600C16—H160.9300
C1—H1B0.9600C17—C221.362 (3)
C1—H1C0.9600C17—C181.500 (3)
C2—C221.493 (3)C18—C191.539 (3)
C2—C31.501 (3)C18—H18A0.9700
C2—H20.9800C18—H18B0.9700
C3—C81.352 (3)C19—C261.509 (4)
C3—C41.448 (3)C19—C201.526 (4)
C4—C51.483 (4)C19—C251.537 (4)
C5—C61.523 (4)C20—C211.492 (4)
C5—H5A0.9700C20—H20A0.9700
C5—H5B0.9700C20—H20B0.9700
C6—C71.520 (3)C21—C221.459 (3)
C6—C231.523 (4)C23—H23A0.9600
C6—C241.528 (4)C23—H23B0.9600
C7—C81.507 (3)C23—H23C0.9600
C7—H7A0.9700C24—H24A0.9600
C7—H7B0.9700C24—H24B0.9600
C9—C101.526 (4)C24—H24C0.9600
C9—H9A0.9700C25—H25A0.9600
C9—H9B0.9700C25—H25B0.9600
C10—C111.499 (4)C25—H25C0.9600
C10—H10A0.9700C26—H26A0.9600
C10—H10B0.9700C26—H26B0.9600
C11—C161.372 (4)C26—H26C0.9600
C8—N—C17119.3 (2)C14—C13—H13119.8
C8—N—C9119.2 (2)C12—C13—H13119.8
C17—N—C9121.1 (2)C13—C14—C15119.8 (3)
C14—O3—H3109.5C13—C14—O3118.2 (3)
C2—C1—H1A109.5C15—C14—O3121.9 (3)
C2—C1—H1B109.5C14—C15—C16119.5 (3)
H1A—C1—H1B109.5C14—C15—H15120.2
C2—C1—H1C109.5C16—C15—H15120.2
H1A—C1—H1C109.5C11—C16—C15121.9 (3)
H1B—C1—H1C109.5C11—C16—H16119.0
C22—C2—C3108.96 (19)C15—C16—H16119.0
C22—C2—C1111.8 (2)C22—C17—N120.1 (2)
C3—C2—C1111.8 (2)C22—C17—C18122.1 (2)
C22—C2—H2108.1N—C17—C18117.77 (19)
C3—C2—H2108.1C17—C18—C19114.43 (19)
C1—C2—H2108.1C17—C18—H18A108.7
C8—C3—C4120.4 (2)C19—C18—H18A108.7
C8—C3—C2121.9 (2)C17—C18—H18B108.7
C4—C3—C2117.7 (2)C19—C18—H18B108.7
O1—C4—C3119.7 (2)H18A—C18—H18B107.6
O1—C4—C5120.6 (2)C26—C19—C20110.5 (2)
C3—C4—C5119.7 (2)C26—C19—C25109.2 (3)
C4—C5—C6114.5 (2)C20—C19—C25109.7 (3)
C4—C5—H5A108.6C26—C19—C18111.8 (2)
C6—C5—H5A108.6C20—C19—C18107.6 (2)
C4—C5—H5B108.6C25—C19—C18108.0 (2)
C6—C5—H5B108.6C21—C20—C19111.9 (2)
H5A—C5—H5B107.6C21—C20—H20A109.2
C7—C6—C5107.6 (2)C19—C20—H20A109.2
C7—C6—C23110.4 (2)C21—C20—H20B109.2
C5—C6—C23110.4 (2)C19—C20—H20B109.2
C7—C6—C24108.9 (2)H20A—C20—H20B107.9
C5—C6—C24110.2 (2)O2—C21—C22121.0 (2)
C23—C6—C24109.3 (2)O2—C21—C20121.3 (2)
C8—C7—C6113.8 (2)C22—C21—C20117.6 (2)
C8—C7—H7A108.8C17—C22—C21119.8 (2)
C6—C7—H7A108.8C17—C22—C2121.8 (2)
C8—C7—H7B108.8C21—C22—C2118.4 (2)
C6—C7—H7B108.8C6—C23—H23A109.5
H7A—C7—H7B107.7C6—C23—H23B109.5
C3—C8—N120.8 (2)H23A—C23—H23B109.5
C3—C8—C7120.6 (2)C6—C23—H23C109.5
N—C8—C7118.5 (2)H23A—C23—H23C109.5
N—C9—C10113.2 (2)H23B—C23—H23C109.5
N—C9—H9A108.9C6—C24—H24A109.5
C10—C9—H9A108.9C6—C24—H24B109.5
N—C9—H9B108.9H24A—C24—H24B109.5
C10—C9—H9B108.9C6—C24—H24C109.5
H9A—C9—H9B107.7H24A—C24—H24C109.5
C11—C10—C9114.0 (2)H24B—C24—H24C109.5
C11—C10—H10A108.8C19—C25—H25A109.5
C9—C10—H10A108.8C19—C25—H25B109.5
C11—C10—H10B108.8H25A—C25—H25B109.5
C9—C10—H10B108.8C19—C25—H25C109.5
H10A—C10—H10B107.7H25A—C25—H25C109.5
C16—C11—C12117.3 (3)H25B—C25—H25C109.5
C16—C11—C10122.2 (2)C19—C26—H26A109.5
C12—C11—C10120.4 (2)C19—C26—H26B109.5
C13—C12—C11121.0 (3)H26A—C26—H26B109.5
C13—C12—H12119.5C19—C26—H26C109.5
C11—C12—H12119.5H26A—C26—H26C109.5
C14—C13—C12120.4 (3)H26B—C26—H26C109.5
C22—C2—C3—C825.4 (3)C12—C13—C14—C153.0 (4)
C1—C2—C3—C898.6 (3)C12—C13—C14—O3178.7 (3)
C22—C2—C3—C4154.2 (2)C13—C14—C15—C162.2 (4)
C1—C2—C3—C481.8 (3)O3—C14—C15—C16179.6 (2)
C8—C3—C4—O1173.4 (2)C12—C11—C16—C151.1 (4)
C2—C3—C4—O16.2 (4)C10—C11—C16—C15175.4 (3)
C8—C3—C4—C56.5 (4)C14—C15—C16—C110.1 (4)
C2—C3—C4—C5173.9 (2)C8—N—C17—C2210.0 (3)
O1—C4—C5—C6157.9 (3)C9—N—C17—C22178.3 (2)
C3—C4—C5—C622.2 (4)C8—N—C17—C18170.4 (2)
C4—C5—C6—C749.8 (3)C9—N—C17—C181.3 (3)
C4—C5—C6—C2370.7 (3)C22—C17—C18—C199.6 (3)
C4—C5—C6—C24168.4 (2)N—C17—C18—C19170.0 (2)
C5—C6—C7—C852.3 (3)C17—C18—C19—C2676.8 (3)
C23—C6—C7—C868.2 (3)C17—C18—C19—C2044.7 (3)
C24—C6—C7—C8171.8 (2)C17—C18—C19—C25163.0 (2)
C4—C3—C8—N173.1 (2)C26—C19—C20—C2163.9 (3)
C2—C3—C8—N6.5 (4)C25—C19—C20—C21175.6 (2)
C4—C3—C8—C73.8 (4)C18—C19—C20—C2158.3 (3)
C2—C3—C8—C7176.6 (2)C19—C20—C21—O2143.7 (3)
C17—N—C8—C313.0 (3)C19—C20—C21—C2238.1 (4)
C9—N—C8—C3175.2 (2)N—C17—C22—C21166.2 (2)
C17—N—C8—C7164.0 (2)C18—C17—C22—C2114.2 (4)
C9—N—C8—C77.9 (3)N—C17—C22—C212.5 (4)
C6—C7—C8—C327.4 (3)C18—C17—C22—C2167.1 (2)
C6—C7—C8—N155.7 (2)O2—C21—C22—C17178.7 (3)
C8—N—C9—C1081.5 (3)C20—C21—C22—C170.5 (4)
C17—N—C9—C10106.8 (3)O2—C21—C22—C20.0 (4)
N—C9—C10—C1162.5 (3)C20—C21—C22—C2178.1 (2)
C9—C10—C11—C1679.8 (3)C3—C2—C22—C1728.4 (3)
C9—C10—C11—C1296.5 (3)C1—C2—C22—C1795.6 (3)
C16—C11—C12—C130.3 (4)C3—C2—C22—C21150.2 (2)
C10—C11—C12—C13176.2 (3)C1—C2—C22—C2185.7 (3)
C11—C12—C13—C141.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.892.681 (3)161
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H33NO3
Mr407.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.350 (2), 15.5152 (15), 13.084 (2)
β (°) 104.677 (14)
V3)2228.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4093, 3914, 2417
Rint0.043
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.180, 1.01
No. of reflections3914
No. of parameters278
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
N—C81.393 (3)O2—C211.225 (3)
N—C171.399 (3)O3—C141.372 (3)
N—C91.478 (3)C3—C81.352 (3)
O1—C41.237 (3)C17—C221.362 (3)
C8—N—C17119.3 (2)O1—C4—C5120.6 (2)
C8—N—C9119.2 (2)C3—C8—N120.8 (2)
C17—N—C9121.1 (2)N—C8—C7118.5 (2)
O1—C4—C3119.7 (2)N—C9—C10113.2 (2)
C4—C5—C6—C2370.7 (3)C26—C19—C20—C2163.9 (3)
C4—C5—C6—C24168.4 (2)C25—C19—C20—C21175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.892.681 (3)161
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds