Download citation
Download citation
link to html
The title compound, [CuCl2(C10H7ClN2S)], crystallizes as neutral CuCl2L [L = 2-chloro-6-(mercaptopyridin-2-yl)­pyridine] molecular units. The copper(II) centre adopts a distorted four-coordinate geometry comprising the two pyridinyl N atoms of the bidentate chelating ligand [Cu—N 2.012 (2) and 2.029 (2) Å] and the two chloride anions [Cu—Cl 2.2049 (6) and 2.2335 (6) Å]. The dihedral angle δ quantifying the extent of the distortion of the geometry from square planar (δ = 0°) towards tetrahedral (δ = 90°) is 36.81 (6)°. There is evidence for the formation of dimeric units via Cl...S interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002118/bt6107sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002118/bt6107Isup2.hkl
Contains datablock I

CCDC reference: 182580

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.071
  • Data-to-parameter ratio = 19.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.21 From the CIF: _reflns_number_total 3191 From the CIF: _diffrn_reflns_limit_ max hkl 17. 12. 26. From the CIF: _diffrn_reflns_limit_ min hkl -16. -12. -25. TEST1: Expected hkl limits for theta max Calculated maximum hkl 17. 12. 28. Calculated minimum hkl -17. -12. -28. ALERT: Expected hkl max differ from CIF values

Comment top

The structure of CuCl2L [L = 2-chloro-6-(mercaptopyridin-2-yl)pyridine], (I), is that of a neutral molecular complex (Fig. 1) in which the copper(II) centre has a distorted four-coordinate geometry comprising the two N atoms of the bidentate chelating ligand L [Cu—N 2.012 (2) and 2.029 (2) Å] and the two chloride anions [Cu—Cl 2.2049 (6) and 2.2335 (6) Å]. The coordination geometry lies between square planar and tetrahedral, with a dihedral angle (δ) between the CuN2 and CuCl2 planes of 36.81 (6)°. Distortion from planarity is unusual for copper(II) complexes. It is attributed to steric repulsion between a coordinated chloride anion and the Cl atom at the 2-position of the pyridine ring [Cl···Cl 3.787 (1) Å].

There is considerable evidence for dimer formation through Cl···S interactions (Fig. 2). Not only is the Cu···Cl distance to the chloride anion involved in dimer formation [2.2335 (6) Å] significantly longer than that to the other chloride anion [2.2049 (6) Å], but also the Ueq value for the former [0.02691 (13) Å2] is considerably smaller than that for the latter [0.03713 (16) Å2]. A search of the Cambridge Structural Database (Allen & Kennard, 1993) revealed that the intradimer Cl···S separation [3.4085 (9) Å] is typical for the distance separating the chloride anion of a CuCl2 fragment and the S atom of either an aromatic or an aliphatic thioether.

Experimental top

The title compound, (I), was obtained as a green lath-shaped crystal in the midst of a crop of green acicular crystals. Both had been produced by vapour phase diffusion of diethyl ether into a methanol solution of the product of the reaction between a methanol solution (10 ml) of copper(II) chloride dihydrate (0.199 g, 0.704 mmol) and a methanol solution (20 ml) of 2-(3,5-dimethylpyrazol-1-yl)-6-(mercaptopyridin-2-yl)pyridine (0.198 g, 0.701 mmol). This last ligand had been previously prepared by treatment of 2-chloro-6-(mercaptopyridin-2-yl)pyridine with 3,5-dimethylpyrazole in the presence of sodium hydride. Mass spectrometric (electrospray), IR and analytical studies of the bulk product suggested that it comprised dichloro[2-(3,5-dimethylpyrazol-1-yl)-6-(mercaptopyridin-2-yl)pyridine]- copper(II) (yield: 0.123 g, 0.290 mmol, 42%). It is assumed that the lath-shaped crystal was a rogue crystal resulting from the presence of a small amount of unreacted 2-chloro-6-(mercaptopyridin-2-yl)pyridine in the sample of 2-(3,5-dimethylpyrazol-1-yl)-6-(mercaptopyridin-2-yl)pyridine.

Refinement top

After location from ΔF syntheses, the aromatic H atoms were placed geometrically and refined with a riding model in which the C—H distance was constrained to be 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL/PC (Bruker, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probablility level.
[Figure 2] Fig. 2. A view of the structure showing the pairwise centrosymmetric Cl···S interactions leading to dimer formation. Displacement ellipsoids are drawn at the 30% probablility level. [Symmetry code (i): 3/2 - x, 1/2 - y, 1 - z.]
(I) top
Crystal data top
C10H7Cl3CuN2SDx = 1.816 Mg m3
Mr = 357.13Melting point: unknown K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.1739 (12) ÅCell parameters from 3638 reflections
b = 9.6928 (9) Åθ = 2.7–26.8°
c = 21.137 (2) ŵ = 2.42 mm1
β = 104.510 (2)°T = 150 K
V = 2612.9 (4) Å3Lath, green
Z = 80.36 × 0.11 × 0.06 mm
F(000) = 1416
Data collection top
Bruker SMART APEX area-detector
diffractometer
3191 independent reflections
Radiation source: normal-focus sealed tube2709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1617
Tmin = 0.782, Tmax = 0.870k = 1212
12577 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier methods
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.035P)2 + 3.807P]
where P = (Fo2 + 2Fc2)/3
3019 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H7Cl3CuN2SV = 2612.9 (4) Å3
Mr = 357.13Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.1739 (12) ŵ = 2.42 mm1
b = 9.6928 (9) ÅT = 150 K
c = 21.137 (2) Å0.36 × 0.11 × 0.06 mm
β = 104.510 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2709 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.870Rint = 0.026
12577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3019 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

4.3612(0.0109)x + 4.7200(0.0074)y + 14.7860(0.0133)z = 14.4719(0.0042)

* 0.0000 (0.0000) Cu1 * 0.0000 (0.0000) N1 * 0.0000 (0.0000) N11

Rms deviation of fitted atoms = 0.0000

-0.6243(0.0039)x + 0.1821(0.0032)y + 20.6872(0.0023)z = 12.3931(0.0025)

Angle to previous plane (with approximate e.s.d.) = 36.81 (0.06)

* 0.0000 (0.0000) Cu1 * 0.0000 (0.0000) Cl1A * 0.0000 (0.0000) Cl1B

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.81283 (2)0.37177 (2)0.620326 (12)0.02032 (9)
Cl1A0.64623 (4)0.31835 (6)0.61577 (3)0.02691 (13)
Cl1B0.79542 (5)0.59810 (6)0.61781 (3)0.03713 (16)
N10.86147 (14)0.18898 (18)0.66433 (9)0.0213 (4)
C20.86340 (17)0.1660 (2)0.72696 (11)0.0254 (5)
Cl20.86089 (5)0.31151 (7)0.77305 (3)0.03394 (15)
C30.86670 (18)0.0364 (3)0.75435 (12)0.0311 (5)
H30.86460.02440.79770.037*
C40.87322 (18)0.0746 (3)0.71472 (13)0.0347 (6)
H40.87370.16380.73100.042*
C50.87900 (17)0.0546 (2)0.65108 (13)0.0296 (5)
H50.88700.12870.62480.036*
C60.87249 (16)0.0794 (2)0.62739 (11)0.0226 (4)
S60.87047 (4)0.11187 (5)0.54457 (3)0.02462 (13)
N110.94027 (14)0.36732 (17)0.58416 (9)0.0203 (4)
C120.96231 (16)0.2509 (2)0.55553 (10)0.0208 (4)
C131.05055 (18)0.2358 (2)0.53281 (11)0.0266 (5)
H131.06340.15390.51330.032*
C141.12019 (18)0.3455 (2)0.53959 (12)0.0296 (5)
H141.18010.33870.52410.036*
C151.09924 (17)0.4644 (2)0.56957 (11)0.0271 (5)
H151.14520.53880.57490.033*
C161.00967 (17)0.4720 (2)0.59152 (11)0.0235 (4)
H160.99640.55220.61220.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02286 (14)0.01603 (13)0.02317 (15)0.00149 (9)0.00783 (11)0.00009 (9)
Cl1A0.0236 (3)0.0286 (3)0.0287 (3)0.0013 (2)0.0068 (2)0.0071 (2)
Cl1B0.0392 (3)0.0172 (3)0.0612 (4)0.0050 (2)0.0241 (3)0.0020 (2)
N10.0208 (9)0.0219 (9)0.0219 (9)0.0008 (7)0.0062 (7)0.0020 (7)
C20.0190 (10)0.0312 (11)0.0262 (12)0.0016 (8)0.0062 (9)0.0029 (9)
Cl20.0352 (3)0.0433 (3)0.0241 (3)0.0036 (2)0.0087 (2)0.0041 (2)
C30.0230 (11)0.0404 (13)0.0311 (13)0.0001 (10)0.0092 (10)0.0141 (10)
C40.0254 (11)0.0273 (12)0.0508 (16)0.0014 (9)0.0083 (11)0.0173 (11)
C50.0238 (11)0.0209 (11)0.0423 (14)0.0009 (8)0.0048 (10)0.0025 (10)
C60.0184 (9)0.0214 (10)0.0279 (11)0.0014 (8)0.0055 (8)0.0016 (8)
S60.0291 (3)0.0194 (3)0.0253 (3)0.0028 (2)0.0068 (2)0.0055 (2)
N110.0233 (9)0.0181 (8)0.0197 (9)0.0013 (7)0.0057 (7)0.0019 (7)
C120.0254 (10)0.0178 (9)0.0179 (10)0.0009 (8)0.0031 (8)0.0013 (7)
C130.0288 (11)0.0269 (11)0.0250 (11)0.0030 (9)0.0080 (9)0.0024 (9)
C140.0241 (11)0.0357 (12)0.0306 (12)0.0028 (9)0.0098 (9)0.0039 (10)
C150.0231 (11)0.0255 (11)0.0311 (12)0.0032 (8)0.0036 (9)0.0062 (9)
C160.0271 (11)0.0178 (10)0.0245 (11)0.0010 (8)0.0045 (9)0.0019 (8)
Geometric parameters (Å, º) top
Cu1—Cl1A2.2335 (6)N11—C121.346 (3)
Cu1—Cl1B2.2049 (6)N11—C161.348 (3)
Cu1—N12.029 (2)C12—C131.372 (3)
Cu1—N112.012 (2)C13—C141.388 (3)
N1—C21.336 (3)C14—C151.376 (3)
N1—C61.348 (3)C15—C161.374 (3)
C2—C31.379 (3)C3—H30.93
C2—Cl21.719 (2)C4—H40.93
C3—C41.380 (4)C5—H50.93
C4—C51.380 (4)C13—H130.93
C5—C61.386 (3)C14—H140.93
C6—S61.772 (2)C15—H150.93
S6—C121.787 (2)C16—H160.93
Cl1A—Cu1—Cl1B97.73 (2)N11—C12—C13123.0 (2)
Cl1A—Cu1—N190.65 (5)N11—C12—S6118.38 (16)
Cl1A—Cu1—N11152.02 (5)C13—C12—S6118.64 (16)
Cl1B—Cu1—N1195.96 (5)C12—C13—C14118.6 (2)
Cl1B—Cu1—N1154.01 (5)C15—C14—C13119.0 (2)
N1—Cu1—N1187.58 (7)C16—C15—C14119.2 (2)
C2—N1—C6117.68 (19)N11—C16—C15122.4 (2)
C2—N1—Cu1121.67 (15)C2—C3—H3121.4
C6—N1—Cu1119.37 (14)C4—C3—H3121.4
N1—C2—C3123.9 (2)C3—C4—H4119.7
N1—C2—Cl2115.25 (17)C5—C4—H4119.7
C3—C2—Cl2120.81 (19)C4—C5—H5121.0
C2—C3—C4117.1 (2)C6—C5—H5121.0
C3—C4—C5120.6 (2)C12—C13—H13120.7
C4—C5—C6118.1 (2)C14—C13—H13120.7
N1—C6—C5122.3 (2)C15—C14—H14120.5
N1—C6—S6117.06 (16)C13—C14—H14120.5
C5—C6—S6120.49 (18)C16—C15—H15120.4
C6—S6—C1299.43 (10)C14—C15—H15120.4
C12—N11—C16117.78 (19)N11—C16—H16118.8
C12—N11—Cu1118.91 (14)C15—C16—H16118.8
C16—N11—Cu1123.11 (15)

Experimental details

Crystal data
Chemical formulaC10H7Cl3CuN2S
Mr357.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)13.1739 (12), 9.6928 (9), 21.137 (2)
β (°) 104.510 (2)
V3)2612.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.36 × 0.11 × 0.06
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.782, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
12577, 3191, 2709
Rint0.026
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.04
No. of reflections3019
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SAINT and SHELXTL/PC (Bruker, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), SHELXL97 and PLATON (Spek, 2001).

Selected geometric parameters (Å, º) top
Cu1—Cl1A2.2335 (6)Cu1—N12.029 (2)
Cu1—Cl1B2.2049 (6)Cu1—N112.012 (2)
Cl1A—Cu1—Cl1B97.73 (2)N1—Cu1—N1187.58 (7)
Cl1A—Cu1—N190.65 (5)C2—N1—Cu1121.67 (15)
Cl1A—Cu1—N11152.02 (5)C6—N1—Cu1119.37 (14)
Cl1B—Cu1—N1195.96 (5)C12—N11—Cu1118.91 (14)
Cl1B—Cu1—N1154.01 (5)C16—N11—Cu1123.11 (15)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds