Download citation
Download citation
link to html
The quinolyl and phenyl rings in the title compound, C18H16N2O, form a dihedral angle of 89.07 (5)°. The amide group is rotated out of the quinoline ring plane, with a dihedral angle of 21.19 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014325/bt6079sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014325/bt6079Isup2.hkl
Contains datablock I

CCDC reference: 175371

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.090
  • Data-to-parameter ratio = 12.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.54 From the CIF: _reflns_number_total 2371 Count of symmetry unique reflns 1753 Completeness (_total/calc) 135.25% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 618 Fraction of Friedel pairs measured 0.353 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.

Comment top

Recently, we have reported the structure of the tridentate ligand N,N'-di-2-naphthylpyridine-2,6-dicarboxamide (Qi et al., 2001). Because the steric effect, the bulky naphthyl ring will hinder the coordination of the ligand to a metal ion, so a new chiral bidentate ligand, (I), containing the quinoline-2-carboxamide stem was synthesized. It is estimated that the N atom of the quinoline ring and the amide N atom will coordinate to a metal ion and form a complex with a five-membered ring structure. The quinolyl and phenyl rings in (I) (Fig. 1) are not coplanar, and form a dihedral angle of 89.07 (5)°. The amide group is rotated out of the quinoline ring plane, forming a dihedral angle of 21.19 (1)°. The title compound could have practical applications as a new chiral ligand (Noyori, 1989).

Experimental top

The title compound was synthesized from 2-quinolinecarboxylic acid and (D)-α-methylbenzylamine according to the general procedure of Johnson et al. (1960). Therefore, the absolute configuration of the chiral centre was known in advance as R. The crystal used for the data collection was obtained by slow evaporation from a saturated DMF-water (10:1) solution at room temperature.

Refinement top

The C-bound H atoms were placed at geometrically calculated positions and included in the final refinement using the riding-model approximation.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing ellipsoids plotted at the 30% probability level (Siemens, 1995).
(R)—N-(1-Phenylethyl)quinoline-2-carboxamide top
Crystal data top
C18H16N2O? # Insert any comments here.
Mr = 276.33Dx = 1.270 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.5955 (11) ÅCell parameters from 2871 reflections
b = 10.684 (2) Åθ = 1–27.5°
c = 12.224 (2) ŵ = 0.08 mm1
β = 98.687 (4)°T = 294 K
V = 722.4 (2) Å3Plate, colourless
Z = 20.28 × 0.20 × 0.10 mm
F(000) = 292
Data collection top
Bruker CCD area-detector
diffractometer
2371 independent reflections
Radiation source: fine-focus sealed tube1768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.978, Tmax = 0.992k = 139
4900 measured reflectionsl = 1515
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2371 reflectionsΔρmax = 0.11 e Å3
190 parametersΔρmin = 0.12 e Å3
Crystal data top
C18H16N2OV = 722.4 (2) Å3
Mr = 276.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.5955 (11) ŵ = 0.08 mm1
b = 10.684 (2) ÅT = 294 K
c = 12.224 (2) Å0.28 × 0.20 × 0.10 mm
β = 98.687 (4)°
Data collection top
Bruker CCD area-detector
diffractometer
2371 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1768 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.992Rint = 0.023
4900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 0.96Δρmax = 0.11 e Å3
2371 reflectionsΔρmin = 0.12 e Å3
190 parameters
Special details top

Experimental. ? #Insert any special details here.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3133 (3)0.21680 (16)0.12833 (12)0.0691 (5)
N10.0831 (3)0.17179 (18)0.14073 (12)0.0542 (4)
H1A0.22580.18580.17560.065*
N20.1586 (3)0.30859 (15)0.33384 (12)0.0465 (4)
C10.2094 (4)0.2274 (2)0.08681 (17)0.0574 (6)
H1B0.34490.24210.03430.069*
C20.1906 (4)0.2847 (2)0.18824 (17)0.0637 (6)
H2B0.31270.33810.20350.076*
C30.0063 (4)0.2639 (2)0.26704 (17)0.0661 (7)
H3A0.01770.30210.33600.079*
C40.1863 (4)0.1864 (3)0.24348 (18)0.0673 (7)
H4A0.32130.17230.29650.081*
C50.1688 (4)0.1289 (2)0.14121 (17)0.0574 (6)
H5A0.29240.07660.12590.069*
C60.0308 (3)0.1486 (2)0.06166 (16)0.0482 (5)
C70.0540 (4)0.0823 (2)0.04895 (16)0.0523 (5)
H7A0.09600.03570.05130.063*
C80.2611 (4)0.0106 (2)0.06516 (19)0.0647 (6)
H8A0.26770.05050.13590.097*
H8B0.41040.03250.06210.097*
H8C0.23630.07270.00780.097*
C90.1031 (4)0.2323 (2)0.17215 (15)0.0508 (5)
C100.0475 (3)0.32209 (19)0.26686 (14)0.0469 (5)
C110.2200 (4)0.4130 (2)0.28159 (18)0.0583 (6)
H11A0.36390.41820.23260.070*
C120.1752 (4)0.4929 (2)0.36763 (18)0.0623 (6)
H12A0.28620.55530.37700.075*
C130.0400 (4)0.48168 (19)0.44329 (16)0.0513 (5)
C140.0995 (5)0.5604 (2)0.53617 (19)0.0661 (6)
H14A0.00670.62340.54990.079*
C150.3104 (5)0.5447 (2)0.60535 (19)0.0687 (7)
H15A0.34990.59810.66540.082*
C160.4681 (4)0.4490 (2)0.58715 (17)0.0649 (6)
H16A0.61070.43810.63620.078*
C170.4169 (4)0.3713 (2)0.49884 (15)0.0555 (5)
H17A0.52400.30750.48810.067*
C180.2032 (3)0.38675 (18)0.42357 (14)0.0445 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0534 (9)0.0819 (12)0.0688 (9)0.0096 (8)0.0011 (7)0.0087 (8)
N10.0500 (10)0.0606 (11)0.0497 (9)0.0063 (9)0.0004 (7)0.0070 (8)
N20.0524 (10)0.0451 (9)0.0422 (8)0.0002 (8)0.0079 (7)0.0011 (7)
C10.0482 (11)0.0664 (15)0.0545 (12)0.0076 (11)0.0025 (9)0.0008 (11)
C20.0587 (13)0.0697 (16)0.0627 (13)0.0059 (12)0.0093 (11)0.0039 (12)
C30.0702 (15)0.0755 (17)0.0514 (12)0.0165 (14)0.0056 (11)0.0032 (11)
C40.0548 (13)0.0873 (18)0.0541 (12)0.0071 (13)0.0098 (10)0.0132 (12)
C50.0460 (11)0.0662 (16)0.0582 (13)0.0048 (11)0.0014 (10)0.0121 (11)
C60.0435 (10)0.0485 (12)0.0513 (10)0.0002 (9)0.0033 (8)0.0112 (9)
C70.0509 (12)0.0511 (12)0.0526 (11)0.0097 (10)0.0006 (9)0.0064 (10)
C80.0715 (14)0.0521 (14)0.0679 (13)0.0006 (12)0.0017 (11)0.0022 (11)
C90.0547 (12)0.0529 (12)0.0436 (10)0.0075 (10)0.0027 (9)0.0070 (9)
C100.0493 (11)0.0475 (12)0.0440 (10)0.0044 (10)0.0074 (9)0.0105 (9)
C110.0542 (12)0.0623 (15)0.0565 (12)0.0044 (12)0.0026 (9)0.0056 (11)
C120.0617 (14)0.0560 (14)0.0699 (14)0.0146 (12)0.0123 (11)0.0037 (13)
C130.0612 (13)0.0445 (12)0.0486 (11)0.0022 (10)0.0096 (9)0.0032 (9)
C140.0826 (17)0.0525 (15)0.0642 (14)0.0110 (12)0.0143 (12)0.0083 (12)
C150.0865 (17)0.0639 (16)0.0540 (13)0.0018 (14)0.0054 (12)0.0146 (11)
C160.0642 (14)0.0781 (16)0.0497 (13)0.0017 (13)0.0005 (10)0.0061 (11)
C170.0563 (12)0.0615 (14)0.0472 (10)0.0072 (11)0.0025 (10)0.0047 (10)
C180.0498 (11)0.0428 (11)0.0421 (10)0.0033 (9)0.0104 (8)0.0028 (9)
Geometric parameters (Å, º) top
O1—C91.227 (2)C8—H8A0.9600
N1—C91.331 (3)C8—H8B0.9600
N1—C71.464 (3)C8—H8C0.9600
N1—H1A0.8600C9—C101.500 (3)
N2—C101.317 (2)C10—C111.400 (3)
N2—C181.371 (2)C11—C121.349 (3)
C1—C21.372 (3)C11—H11A0.9300
C1—C61.377 (3)C12—C131.408 (3)
C1—H1B0.9300C12—H12A0.9300
C2—C31.368 (3)C13—C181.410 (3)
C2—H2B0.9300C13—C141.412 (3)
C3—C41.368 (4)C14—C151.354 (3)
C3—H3A0.9300C14—H14A0.9300
C4—C51.383 (3)C15—C161.390 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C61.382 (3)C16—C171.357 (3)
C5—H5A0.9300C16—H16A0.9300
C6—C71.514 (3)C17—C181.404 (3)
C7—C81.516 (3)C17—H17A0.9300
C7—H7A0.9800
C9—N1—C7122.48 (16)H8A—C8—H8C109.5
C9—N1—H1A118.8H8B—C8—H8C109.5
C7—N1—H1A118.8O1—C9—N1123.29 (19)
C10—N2—C18117.84 (17)O1—C9—C10119.8 (2)
C2—C1—C6121.02 (19)N1—C9—C10116.95 (17)
C2—C1—H1B119.5N2—C10—C11123.49 (19)
C6—C1—H1B119.5N2—C10—C9118.02 (18)
C3—C2—C1120.5 (2)C11—C10—C9118.46 (18)
C3—C2—H2B119.8C12—C11—C10119.3 (2)
C1—C2—H2B119.8C12—C11—H11A120.4
C4—C3—C2119.4 (2)C10—C11—H11A120.4
C4—C3—H3A120.3C11—C12—C13119.9 (2)
C2—C3—H3A120.3C11—C12—H12A120.1
C3—C4—C5120.4 (2)C13—C12—H12A120.1
C3—C4—H4A119.8C12—C13—C18117.44 (18)
C5—C4—H4A119.8C12—C13—C14123.5 (2)
C6—C5—C4120.5 (2)C18—C13—C14119.09 (18)
C6—C5—H5A119.7C15—C14—C13120.4 (2)
C4—C5—H5A119.7C15—C14—H14A119.8
C1—C6—C5118.22 (19)C13—C14—H14A119.8
C1—C6—C7121.19 (17)C14—C15—C16120.4 (2)
C5—C6—C7120.58 (19)C14—C15—H15A119.8
N1—C7—C6111.31 (17)C16—C15—H15A119.8
N1—C7—C8109.47 (16)C17—C16—C15120.9 (2)
C6—C7—C8112.57 (18)C17—C16—H16A119.5
N1—C7—H7A107.8C15—C16—H16A119.5
C6—C7—H7A107.8C16—C17—C18120.4 (2)
C8—C7—H7A107.8C16—C17—H17A119.8
C7—C8—H8A109.5C18—C17—H17A119.8
C7—C8—H8B109.5N2—C18—C17119.15 (18)
H8A—C8—H8B109.5N2—C18—C13122.04 (16)
C7—C8—H8C109.5C17—C18—C13118.81 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.862.412.754 (2)104

Experimental details

Crystal data
Chemical formulaC18H16N2O
Mr276.33
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)5.5955 (11), 10.684 (2), 12.224 (2)
β (°) 98.687 (4)
V3)722.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.20 × 0.10
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4900, 2371, 1768
Rint0.023
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 0.96
No. of reflections2371
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: SMART (Siemens, 1995), SMART, SHELXTL-NT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.862.412.754 (2)104.3
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds