Download citation
Download citation
link to html
The mol­ecule of the title compound, C18H15ClN2, is not planar. The dihedral angle between the quinoline and phenyl rings is 116.2 (1)°. Bond lengths and angles are normal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011771/bt6063sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011771/bt6063Isup2.hkl
Contains datablock I

CCDC reference: 170908

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.071
  • wR factor = 0.217
  • Data-to-parameter ratio = 17.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_030 Alert B Refined Extinction parameter within range .... 2.00 Sigma
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Schiff bases, occupying an important place in medicine and industry, are generally useful compounds as starting materials in the preparation of textile, dyestuffs, pesticides and pharmaceuticals, and of compounds that serve as stabilizers and inhibitors in photography (Sommes, 1976). Great attention has been recently begun to concentrate on the compounds obtained from heterocyclic carbaldehydes for the therapy of cancer, the disease of our age (Kouznetsov et al., 1998; Öcal & Kaban, 1998). Hence, in our research, new Schiff bases containing different functional groups have been synthesized for the purpose of making some contributions to that class of substances which are now being tried as anticancer reagents.

This structure of the title compound, 4,6-Dimethylquinoline-2-[N-(o-chlorophenyl)formimidoyl], (I), is isomorphous with 4,6-dimethylquinoline-2-[N-(o-tolyl)formimidoyl], (II) (Akkurt et al., 2001). The quinoline and phenyl rings are planar. In the quinoline ring, the C3—C4—C5 angle is bigger than 120° [124.0 (3)°] and the N1—C9—C8 angle is smaller than 120° [118.4 (3)°]. Corresponding values are almostly comparable with the ones in 3-(p-chlorophenyl)-5-methyl-2-(8-quinolinyl)-4-thiazolidinone (Öztürk et al., 2000) [for molecule A of two independent molecules in the asymmetric unit, 122.8 (6) and 120.3 (5)°, respectively, and for the molecule B, 124.4 (7) and 117.4 (4)°, respectively] and in (II) [123.4 (2) and 118.2 (2)°, respectively]. The fold angles between the least-squares planes of the quinoline and phenyl rings are 116.2 (1) and 118.5 (1)° in (II) and 61.8 (1)° in N-8-azanaphtylmethylene-4-chloroaniline (Öztürk et al., 2001). This large deviation is possibly due to the steric factors which occur the different position of the Cl atom in the phenyl ring. There are non-bonded contacts > 3.3 Å between non-H atoms.

Experimental top

The title compound was synthesized by the condensation of 4,6-dimethylquinoline-2-carbaldehyde with o-chloroaniline in dry benzene over a period of 11 h. Light-yellow crystals were obtained after crystallization from petroleum ether (313–333 K). Yield: 81%; m.p.: 405 K; IR (KBr): γ = 3030, 2900, 1580 cm-1; 1H NMR (CDCl3, δ, 200 MHz): 2.58 (3H, s, 6-CH3), 2.74 (3H, s, 4-CH3), 7.12–8.65 (9H, m, ArH and CH) p.p.m.; UV (CHCl3): λmax = 262.3, 314.4 nm. Elemental analysis, C18H15N2 requires: C 73.34, H 5.13, N 9.50%; found: C 73.18, H 5.07, N 9.43% (Aydo~gan, 1993).

Refinement top

The methyl groups were allowed to rotate about their local threefold axes.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title compound showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of unit cell along the a axis.
2-[(2-Chlorophenyl)iminomethyl]-4,6-dimethylquinoline top
Crystal data top
C18H15ClN2Z = 2
Mr = 294.77F(000) = 308
Triclinic, P1Dx = 1.278 Mg m3
a = 7.4962 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5511 (9) ÅCell parameters from 1530 reflections
c = 11.4013 (11) Åθ = 2.8–27.5°
α = 79.039 (2)°µ = 0.24 mm1
β = 76.866 (2)°T = 293 K
γ = 76.886 (2)°Needle, light yellow
V = 765.90 (13) Å30.34 × 0.22 × 0.10 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3363 independent reflections
Radiation source: fine-focus sealed tube1573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 89
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.922, Tmax = 0.976l = 1214
4930 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.0995P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.006
3363 reflectionsΔρmax = 0.24 e Å3
193 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (6)
Crystal data top
C18H15ClN2γ = 76.886 (2)°
Mr = 294.77V = 765.90 (13) Å3
Triclinic, P1Z = 2
a = 7.4962 (7) ÅMo Kα radiation
b = 9.5511 (9) ŵ = 0.24 mm1
c = 11.4013 (11) ÅT = 293 K
α = 79.039 (2)°0.34 × 0.22 × 0.10 mm
β = 76.866 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3363 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1573 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.976Rint = 0.040
4930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
3363 reflectionsΔρmin = 0.29 e Å3
193 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09265 (15)0.64820 (14)0.13413 (10)0.0847 (5)
N10.2795 (4)0.1499 (3)0.2679 (3)0.0529 (8)
N20.2447 (4)0.5196 (3)0.2078 (3)0.0557 (8)
C10.2753 (5)0.2763 (4)0.2971 (3)0.0504 (9)
C20.2659 (5)0.2931 (4)0.4162 (3)0.0535 (9)
H2B0.26520.38460.43270.064*
C30.2581 (5)0.1783 (4)0.5066 (3)0.0496 (9)
C40.2561 (4)0.0402 (4)0.4773 (3)0.0467 (8)
C50.2413 (5)0.0895 (4)0.5605 (3)0.0558 (9)
H5A0.23240.08550.63980.067*
C60.2397 (5)0.2211 (4)0.5288 (4)0.0608 (10)
C70.2565 (5)0.2259 (4)0.4094 (4)0.0635 (11)
H7A0.25800.31450.38740.076*
C80.2707 (5)0.1043 (4)0.3256 (4)0.0614 (10)
H8A0.28110.11080.24710.074*
C90.2699 (4)0.0319 (4)0.3562 (3)0.0496 (9)
C100.2508 (6)0.1982 (4)0.6332 (3)0.0664 (11)
H10A0.25080.29840.63470.100*
H10B0.13910.13880.65650.100*
H10C0.35780.17020.68910.100*
C110.2192 (7)0.3590 (4)0.6193 (4)0.0807 (13)
H11A0.22310.33520.69800.121*
H11B0.10210.42110.59350.121*
H11C0.31950.40810.62360.121*
C120.2763 (5)0.3988 (4)0.1977 (3)0.0545 (9)
H12A0.30130.38690.12430.065*
C130.2514 (5)0.6330 (4)0.1083 (3)0.0509 (9)
C140.4048 (6)0.6813 (5)0.0530 (4)0.0702 (11)
H14A0.50470.63290.07730.084*
C150.4128 (8)0.7990 (5)0.0371 (4)0.0865 (14)
H15A0.51840.83110.07200.104*
C160.2639 (8)0.8698 (5)0.0757 (4)0.0865 (14)
H16A0.26860.94910.13730.104*
C170.1083 (7)0.8233 (5)0.0232 (4)0.0714 (12)
H17A0.00770.87080.04900.086*
C180.1035 (5)0.7061 (4)0.0676 (3)0.0550 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0617 (7)0.1274 (11)0.0706 (8)0.0348 (6)0.0137 (5)0.0067 (7)
N10.0569 (18)0.0596 (19)0.0461 (18)0.0206 (15)0.0049 (13)0.0116 (16)
N20.061 (2)0.0602 (19)0.0485 (19)0.0228 (16)0.0107 (14)0.0018 (15)
C10.051 (2)0.055 (2)0.046 (2)0.0164 (18)0.0059 (16)0.0075 (18)
C20.062 (2)0.055 (2)0.050 (2)0.0259 (19)0.0080 (17)0.0100 (18)
C30.054 (2)0.059 (2)0.040 (2)0.0238 (18)0.0067 (15)0.0050 (18)
C40.0415 (19)0.049 (2)0.050 (2)0.0145 (16)0.0058 (15)0.0063 (17)
C50.052 (2)0.061 (2)0.053 (2)0.0162 (18)0.0046 (17)0.0050 (19)
C60.051 (2)0.055 (2)0.072 (3)0.0130 (18)0.0044 (19)0.006 (2)
C70.066 (3)0.049 (2)0.077 (3)0.014 (2)0.007 (2)0.016 (2)
C80.065 (2)0.062 (2)0.062 (3)0.020 (2)0.0022 (19)0.022 (2)
C90.046 (2)0.053 (2)0.052 (2)0.0165 (17)0.0038 (16)0.0094 (18)
C100.092 (3)0.063 (2)0.055 (2)0.027 (2)0.023 (2)0.008 (2)
C110.085 (3)0.058 (3)0.092 (3)0.016 (2)0.014 (3)0.005 (2)
C120.058 (2)0.067 (2)0.041 (2)0.0226 (19)0.0085 (16)0.0038 (18)
C130.055 (2)0.055 (2)0.043 (2)0.0136 (18)0.0064 (17)0.0096 (18)
C140.066 (3)0.081 (3)0.068 (3)0.019 (2)0.024 (2)0.003 (2)
C150.096 (4)0.082 (3)0.080 (3)0.002 (3)0.040 (3)0.002 (3)
C160.123 (4)0.070 (3)0.058 (3)0.014 (3)0.020 (3)0.008 (2)
C170.091 (3)0.070 (3)0.050 (2)0.033 (2)0.006 (2)0.004 (2)
C180.060 (2)0.063 (2)0.043 (2)0.0200 (19)0.0018 (16)0.0087 (19)
Geometric parameters (Å, º) top
Cl1—C181.738 (4)C8—C91.411 (5)
N1—C11.321 (4)C8—H8A0.9300
N1—C91.361 (4)C10—H10A0.9600
N2—C121.260 (4)C10—H10B0.9600
N2—C131.413 (4)C10—H10C0.9600
C1—C21.416 (5)C11—H11A0.9600
C1—C121.466 (5)C11—H11B0.9600
C2—C31.355 (5)C11—H11C0.9600
C2—H2B0.9300C12—H12A0.9300
C3—C41.418 (4)C13—C141.382 (5)
C3—C101.505 (5)C13—C181.389 (5)
C4—C51.408 (5)C14—C151.372 (6)
C4—C91.427 (5)C14—H14A0.9300
C5—C61.369 (5)C15—C161.379 (7)
C5—H5A0.9300C15—H15A0.9300
C6—C71.405 (5)C16—C171.377 (6)
C6—C111.512 (5)C16—H16A0.9300
C7—C81.357 (5)C17—C181.372 (5)
C7—H7A0.9300C17—H17A0.9300
C1—N1—C9117.8 (3)H10A—C10—H10B109.5
C12—N2—C13119.0 (3)C3—C10—H10C109.5
N1—C1—C2122.5 (3)H10A—C10—H10C109.5
N1—C1—C12115.9 (3)H10B—C10—H10C109.5
C2—C1—C12121.6 (3)C6—C11—H11A109.5
C3—C2—C1121.3 (3)C6—C11—H11B109.5
C3—C2—H2B119.4H11A—C11—H11B109.5
C1—C2—H2B119.4C6—C11—H11C109.5
C2—C3—C4117.7 (3)H11A—C11—H11C109.5
C2—C3—C10120.7 (3)H11B—C11—H11C109.5
C4—C3—C10121.7 (3)N2—C12—C1122.5 (3)
C5—C4—C3124.0 (3)N2—C12—H12A118.7
C5—C4—C9118.0 (3)C1—C12—H12A118.7
C3—C4—C9118.0 (3)C14—C13—C18117.6 (4)
C6—C5—C4122.4 (4)C14—C13—N2122.9 (3)
C6—C5—H5A118.8C18—C13—N2119.5 (3)
C4—C5—H5A118.8C15—C14—C13121.4 (4)
C5—C6—C7118.5 (4)C15—C14—H14A119.3
C5—C6—C11121.2 (4)C13—C14—H14A119.3
C7—C6—C11120.3 (4)C14—C15—C16119.8 (4)
C8—C7—C6121.5 (3)C14—C15—H15A120.1
C8—C7—H7A119.2C16—C15—H15A120.1
C6—C7—H7A119.2C17—C16—C15120.2 (4)
C7—C8—C9120.7 (4)C17—C16—H16A119.9
C7—C8—H8A119.6C15—C16—H16A119.9
C9—C8—H8A119.6C16—C17—C18119.2 (4)
N1—C9—C8118.4 (3)C16—C17—H17A120.4
N1—C9—C4122.7 (3)C18—C17—H17A120.4
C8—C9—C4118.9 (3)C17—C18—C13121.8 (4)
C3—C10—H10A109.5C17—C18—Cl1119.1 (3)
C3—C10—H10B109.5C13—C18—Cl1119.0 (3)
C9—N1—C1—C21.5 (5)C5—C4—C9—N1178.1 (3)
C9—N1—C1—C12177.0 (3)C3—C4—C9—N11.9 (5)
N1—C1—C2—C30.9 (5)C5—C4—C9—C80.8 (5)
C12—C1—C2—C3177.5 (3)C3—C4—C9—C8179.2 (3)
C1—C2—C3—C41.1 (5)C13—N2—C12—C1178.9 (3)
C1—C2—C3—C10179.1 (3)N1—C1—C12—N2169.1 (3)
C2—C3—C4—C5177.6 (3)C2—C1—C12—N29.5 (5)
C10—C3—C4—C52.1 (5)C12—N2—C13—C1454.7 (5)
C2—C3—C4—C92.4 (5)C12—N2—C13—C18129.3 (4)
C10—C3—C4—C9177.9 (3)C18—C13—C14—C151.4 (6)
C3—C4—C5—C6179.9 (3)N2—C13—C14—C15174.7 (4)
C9—C4—C5—C60.1 (5)C13—C14—C15—C161.3 (7)
C4—C5—C6—C71.1 (5)C14—C15—C16—C170.6 (7)
C4—C5—C6—C11178.6 (3)C15—C16—C17—C180.0 (7)
C5—C6—C7—C81.2 (6)C16—C17—C18—C130.1 (6)
C11—C6—C7—C8178.4 (4)C16—C17—C18—Cl1179.7 (3)
C6—C7—C8—C90.3 (6)C14—C13—C18—C170.8 (5)
C1—N1—C9—C8178.8 (3)N2—C13—C18—C17175.5 (3)
C1—N1—C9—C40.1 (5)C14—C13—C18—Cl1179.6 (3)
C7—C8—C9—N1178.3 (3)N2—C13—C18—Cl14.1 (4)
C7—C8—C9—C40.7 (5)

Experimental details

Crystal data
Chemical formulaC18H15ClN2
Mr294.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4962 (7), 9.5511 (9), 11.4013 (11)
α, β, γ (°)79.039 (2), 76.866 (2), 76.886 (2)
V3)765.90 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.34 × 0.22 × 0.10
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
4930, 3363, 1573
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.217, 0.98
No. of reflections3363
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Cl1—C181.738 (4)C2—C31.355 (5)
N1—C11.321 (4)C3—C101.505 (5)
N1—C91.361 (4)C6—C111.512 (5)
N2—C121.260 (4)C7—C81.357 (5)
N2—C131.413 (4)C13—C141.382 (5)
C1—C21.416 (5)C13—C181.389 (5)
C1—C121.466 (5)
C1—N1—C9117.8 (3)C7—C6—C11120.3 (4)
C12—N2—C13119.0 (3)N1—C9—C8118.4 (3)
N1—C1—C2122.5 (3)N1—C9—C4122.7 (3)
N1—C1—C12115.9 (3)N2—C12—C1122.5 (3)
C2—C1—C12121.6 (3)C14—C13—C18117.6 (4)
C2—C3—C10120.7 (3)C14—C13—N2122.9 (3)
C4—C3—C10121.7 (3)C18—C13—N2119.5 (3)
C5—C4—C3124.0 (3)C17—C18—Cl1119.1 (3)
C5—C6—C11121.2 (4)C13—C18—Cl1119.0 (3)
C1—C2—C3—C10179.1 (3)C2—C1—C12—N29.5 (5)
C4—C5—C6—C11178.6 (3)C12—N2—C13—C1454.7 (5)
C13—N2—C12—C1178.9 (3)C12—N2—C13—C18129.3 (4)
N1—C1—C12—N2169.1 (3)N2—C13—C18—Cl14.1 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds