Download citation
Download citation
link to html
The title compound, C10H10N2·C4H8N2O2, consists of hydrogen-bonded 2,3-di­methyl­quinoxaline and di­methyl­glyoxime mol­ecules. Both di­methyl­glyoximes are located on an inversion centre and there are two half-mol­ecules in the asymmetric unit. The di­methyl­glyoxime mol­ecules are linked about inversion centres to the 2,3-di­methyl­quinoxaline moiety by O—H...N hydrogen bonds (O...N 2.898 and 2.805 Å) to form polymeric chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010765/bt6055sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010765/bt6055Isup2.hkl
Contains datablock I

CCDC reference: 170882

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.133
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
PLAT_726 Alert A H...A Calc 13.00(2), Rep 2.04510, Dev. 10.95 Ang. H1 -N2 1.555 1.546 PLAT_727 Alert A D...A Calc 12.230(3), Rep 2.89770, Dev. 9.33 Ang. O1 -N2 1.555 1.546 PLAT_728 Alert A D-H..A Calc 24.9(16), Rep 176.30, Dev. 151.40 Deg. O1 -H1 -N2 1.555 1.555 1.546
Yellow Alert Alert Level C:
PLAT_745 Alert C D-H Calc 0.85(2), Rep 0.85390 .... Missing s.u. O1 -H1 1.555 1.555 PLAT_745 Alert C D-H Calc 0.81(2), Rep 0.81800 .... Missing s.u. O2 -H2 1.555 1.555 PLAT_746 Alert C H...A Calc 2.00(2), Rep 1.99170 .... Missing s.u. H2 -N3 1.555 1.555 PLAT_747 Alert C D...A Calc 2.805(2), Rep 2.80530 .... Missing s.u. O2 -N3 1.555 1.555 PLAT_748 Alert C D-H..A Calc 173(2), Rep 172.85 .... Missing s.u. O2 -H2 -N3 1.555 1.555 1.555
3 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
5 Alert Level C = Please check

Comment top

Intermolecular hydrogen bonding has received considerable attention among the directional non-covalent intermolecular interactions (Etter et al., 1990), which combines moderate strength and directionality (Karle et al., 1996) in designing the compounds to form supramolecular structures.

Oxime (–CN—OH) groups possess stronger hydrogen-bonding capabilities than alcohols, phenols and carboxylic acids (Marsman et al., 1999). The hydrogen-bond systems in the crystals of oximes have been analysed and a correlation between a pattern of hydrogen bonding and N—O bond lengths is suggested (Bertolasi et al., 1982). The configurational and/or conformational isomers of glyoxime derivatives (dioximes) have also been analysed (Chertanova et al., 1994).

Oxime/oximato metal complexes have been investigated actively since the beginning of the last century of the millennium (Kukushkin & Pombeiro, 1999). In general, oxime and dioxime derivatives are very important compounds in chemical industry and medicine. Dimethylglyoxime is actually the first selective organic reagent applied in the analysis of metals (Tshugaeff, 1905).

Crystals of dimethylglyoxime were reported by McCrone (1949) to be triclinic and its structure was undertaken by Merritt & Lanterman (1952). A neutron diffraction refinement of the crystal structure of the dimethylgluoxime clarified the existence of the O—H (classical structure) bonding rather than N—H (zwitterion structure) (Hamilton, 1961).

Quinoxaline derivatives are very useful compounds with well known biological activities (Cheeseman & Werstiuk, 1978; Sato, 1996). Some of the quinoxaline derivatives act as in vitro anticancer compounds (Corona et al., 1998).

The structure of 2,3-dimethylquinoxaline was reported by Wozniak et al., (1990) to be monoclinic. The crystal structures containing 2,3-disubstituted derivatives of quinoxaline have aroused considerable interest because of the repulsions between the neighbouring substituents (Visser et al., 1968; Visser & Vos, 1971; Lipkovski et al., 1985; Krigier et al., 1985).

The crystal structure determination of the title molecule, (I), was carried out in order to understand the strength of the hydrogen-bonding capabilities of the oxime groups having the classical (–CN—O—H) structures. As shown in Fig. 1, the title compound, (I), consists of hydrogen-bonded 2,3-dimethylquinoxaline and dimethylglyoxime moieties. Both dimethylglyoximes are located on an inversion centre and there are two half-molecules in the asymmetric unit.

The bond lengths and angles of the 2,3-dimethylquinoxaline moiety are in accordance with the reported values (Wozniak et al., 1990).

In the dimethylglyoxime moieties, the O—N, CN, C—C bond lengths and CN—O bond angles are larger, while the O—H, C—C' bonds and N—O—H, C—CN, C'-CN angles are smaller than the corresponding ones, reported in dimethylglyoxime (Hamilton, 1961) (Table 2). A comparison of the bond lengths and angles of the dimethylgluoxime moieties in the title compound, (I), with the corresponding ones in dimethylglyoxime, (II) (Hamilton, 1961), nickel dimethylglyoxime, (III) (Godkycki & Rundle, 1953), copper dimethylglyoxime, (IV) (Frasson et al., 1959) and acetoxime, (V) (Bierlein & Lingafelter, 1951), are given in Table 2.

As can be seen from the packing diagram (Fig. 2), there are intermolecular hydrogen bonds between the hydroxy H atoms of the dimethylglyoxime and N atoms of the 2,3-dimethylquinoxaline moieties (Table 3). The intermolecular hydrogen bonds are highly effective in forming the polymeric chains. Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

An examination of the deviations from the least-squares planes through the individual rings shows that rings A (C5—C10) and B (C5/N2/C3/C11/N3/C10) are nearly planar with maximum deviations for the C5 [-0.007 (2) Å] and C5 [0.016 (2) Å] atoms, respectively.

Experimental top

The title compound, (I), was prepared from a mixture of 2,3-butaneidone monoxime (2.02 g, 20.0 mmol), o-phenylendiamine (1.08 g, 10.0 mmol) and Na2SO4 (2.84 g, 20.0 mmol) in ethanol (30 ml). The mixture was heated at 343 K for 6 h. The solution was filtered and allowed to stand overnight in a refrigerator. The resulting precipitate was filtered and then recrystallized from 1,4-dioxane.

Refinement top

The oxime H atoms were located from a difference map and refined isotropically; the positions of the remaining H atoms were calculated geometrically at distances of 0.93 (CH) and 0.96 Å (CH3) from the corresponding C atoms, and a riding model was used during the refinement process. The H atoms of the C2 and C13 methyl groups are disordered.

Computing details top

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: MolEN.

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram for (I). Hydrogen bonds are shown as dotted lines.
(I) top
Crystal data top
C10H10N2·C4H8N2O2Z = 2
Mr = 274.32F(000) = 292
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9814 (10) ÅCell parameters from 25 reflections
b = 8.2719 (10) Åθ = 10–11°
c = 12.168 (3) ŵ = 0.09 mm1
α = 91.779 (18)°T = 294 K
β = 106.668 (14)°Rod-shaped, yellow
γ = 111.018 (10)°0.30 × 0.25 × 0.20 mm
V = 710.3 (2) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
2244 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.3°, θmin = 2.7°
ω/2θ scansh = 09
Absorption correction: ψ scan
(Fair, 1990)
k = 109
Tmin = 0.974, Tmax = 0.982l = 1514
2884 measured reflections3 standard reflections every 120 min
2884 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.0913P]
where P = (Fo2 + 2Fc2)/3
2884 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H10N2·C4H8N2O2γ = 111.018 (10)°
Mr = 274.32V = 710.3 (2) Å3
Triclinic, P1Z = 2
a = 7.9814 (10) ÅMo Kα radiation
b = 8.2719 (10) ŵ = 0.09 mm1
c = 12.168 (3) ÅT = 294 K
α = 91.779 (18)°0.30 × 0.25 × 0.20 mm
β = 106.668 (14)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2244 reflections with I > 2σ(I)
Absorption correction: ψ scan
(Fair, 1990)
Rint = 0.000
Tmin = 0.974, Tmax = 0.9823 standard reflections every 120 min
2884 measured reflections intensity decay: 1%
2884 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
2884 reflectionsΔρmin = 0.23 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.41475 (19)0.03235 (18)0.44813 (11)0.0359 (3)
C30.27915 (19)0.05366 (18)0.04196 (12)0.0337 (3)
C50.53352 (19)0.26909 (18)0.09310 (12)0.0343 (3)
C100.6008 (2)0.34364 (18)0.00366 (12)0.0347 (3)
C110.3451 (2)0.13324 (19)0.13348 (12)0.0366 (3)
C140.5746 (2)0.51620 (19)0.44390 (12)0.0414 (4)
N10.43691 (17)0.03273 (16)0.35668 (10)0.0403 (3)
N20.37163 (16)0.12052 (15)0.06745 (10)0.0351 (3)
N30.50272 (17)0.27221 (16)0.10997 (10)0.0384 (3)
N40.5232 (2)0.42225 (18)0.36865 (11)0.0480 (3)
O10.27003 (15)0.03360 (16)0.26142 (9)0.0512 (3)
O20.67083 (19)0.45902 (19)0.26459 (11)0.0635 (4)
C20.2332 (2)0.1654 (2)0.45309 (14)0.0538 (5)
H2A0.13630.18680.37980.081*0.50
H2B0.19680.12260.51300.081*0.50
H2C0.24980.27240.46960.081*0.50
H2D0.25230.20110.52850.081*0.50
H2E0.19180.26530.39530.081*0.50
H2F0.13880.11540.43870.081*0.50
C40.1028 (2)0.10884 (19)0.07081 (14)0.0443 (4)
H4A0.08660.15140.00050.066*
H4B0.11320.19670.11890.066*
H4C0.00440.08260.11160.066*
C60.6350 (2)0.3473 (2)0.20883 (13)0.0439 (4)
H60.59040.30090.26830.053*
C70.7989 (2)0.4915 (2)0.23377 (14)0.0503 (4)
H70.86600.54250.31060.060*
C80.8679 (2)0.5643 (2)0.14522 (15)0.0495 (4)
H80.98090.66180.16390.059*
C90.7705 (2)0.4932 (2)0.03228 (14)0.0440 (4)
H90.81590.54310.02610.053*
C120.2337 (2)0.0600 (2)0.25797 (13)0.0520 (4)
H12A0.29280.13360.30670.078*
H12B0.10710.05540.27320.078*
H12C0.22980.05590.27390.078*
C130.7696 (3)0.6519 (2)0.42280 (16)0.0601 (5)
H13A0.84420.66350.34340.090*0.50
H13B0.76130.76230.43860.090*0.50
H13C0.82800.61700.47290.090*0.50
H13D0.77810.69840.49320.090*0.50
H13E0.86110.59950.39800.090*0.50
H13F0.79430.74480.36370.090*0.50
H10.303 (3)0.009 (3)0.2045 (19)0.071 (6)*
H20.619 (3)0.397 (3)0.224 (2)0.081 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (7)0.0367 (7)0.0343 (7)0.0081 (6)0.0137 (6)0.0092 (6)
C30.0320 (7)0.0355 (7)0.0373 (7)0.0151 (6)0.0134 (6)0.0086 (6)
C50.0334 (7)0.0351 (7)0.0365 (7)0.0131 (6)0.0136 (6)0.0109 (6)
C100.0353 (7)0.0358 (7)0.0368 (7)0.0145 (6)0.0149 (6)0.0139 (6)
C110.0369 (7)0.0406 (8)0.0363 (8)0.0176 (6)0.0135 (6)0.0101 (6)
C140.0463 (9)0.0417 (8)0.0389 (8)0.0135 (7)0.0213 (7)0.0129 (6)
N10.0352 (6)0.0453 (7)0.0337 (6)0.0079 (5)0.0103 (5)0.0108 (5)
N20.0338 (6)0.0364 (6)0.0367 (6)0.0114 (5)0.0159 (5)0.0121 (5)
N30.0391 (7)0.0437 (7)0.0356 (7)0.0157 (6)0.0162 (5)0.0141 (5)
N40.0506 (8)0.0569 (8)0.0367 (7)0.0165 (6)0.0188 (6)0.0171 (6)
O10.0396 (6)0.0650 (7)0.0332 (6)0.0050 (5)0.0071 (5)0.0153 (5)
O20.0572 (8)0.0833 (9)0.0411 (7)0.0148 (7)0.0164 (6)0.0293 (6)
C20.0382 (8)0.0633 (10)0.0411 (9)0.0015 (7)0.0113 (7)0.0172 (7)
C40.0377 (8)0.0417 (8)0.0493 (9)0.0091 (7)0.0158 (7)0.0057 (7)
C60.0466 (9)0.0458 (8)0.0364 (8)0.0113 (7)0.0168 (7)0.0109 (6)
C70.0489 (9)0.0466 (9)0.0402 (8)0.0067 (7)0.0073 (7)0.0018 (7)
C80.0401 (8)0.0393 (8)0.0572 (10)0.0028 (7)0.0141 (7)0.0090 (7)
C90.0401 (8)0.0419 (8)0.0491 (9)0.0098 (7)0.0199 (7)0.0169 (7)
C120.0539 (10)0.0612 (10)0.0348 (8)0.0166 (8)0.0122 (7)0.0065 (7)
C130.0506 (10)0.0640 (11)0.0518 (10)0.0051 (9)0.0163 (8)0.0210 (8)
Geometric parameters (Å, º) top
C1—N11.2811 (18)C2—H2D0.9600
C1—C1i1.477 (3)C2—H2E0.9600
C1—C21.491 (2)C2—H2F0.9600
C3—N21.3119 (18)C4—H4A0.9600
C3—C111.4434 (19)C4—H4B0.9600
C3—C41.497 (2)C4—H4C0.9600
C5—N21.3723 (18)C6—C71.363 (2)
C5—C61.404 (2)C6—H60.9300
C5—C101.4114 (19)C7—C81.403 (2)
C10—N31.3676 (19)C7—H70.9300
C10—C91.410 (2)C8—C91.359 (2)
C11—N31.3123 (19)C8—H80.9300
C11—C121.495 (2)C9—H90.9300
C14—N41.2813 (19)C12—H12A0.9600
C14—C14ii1.473 (3)C12—H12B0.9600
C14—C131.499 (2)C12—H12C0.9600
N1—O11.4033 (16)C13—H13A0.9600
N4—O21.3956 (18)C13—H13B0.9600
O1—H10.85 (2)C13—H13C0.9600
O2—H20.82 (2)C13—H13D0.9600
C2—H2A0.9600C13—H13E0.9600
C2—H2B0.9600C13—H13F0.9600
C2—H2C0.9600
N1—C1—C1i115.18 (15)C3—C4—H4A109.5
N1—C1—C2124.09 (13)C3—C4—H4B109.5
C1i—C1—C2120.73 (15)H4A—C4—H4B109.5
N2—C3—C11121.25 (12)C3—C4—H4C109.5
N2—C3—C4118.64 (12)H4A—C4—H4C109.5
C11—C3—C4120.12 (13)H4B—C4—H4C109.5
N2—C5—C6120.23 (12)C7—C6—C5119.83 (14)
N2—C5—C10120.40 (13)C7—C6—H6120.1
C6—C5—C10119.37 (13)C5—C6—H6120.1
N3—C10—C9119.98 (13)C6—C7—C8120.96 (15)
N3—C10—C5120.59 (13)C6—C7—H7119.5
C9—C10—C5119.43 (13)C8—C7—H7119.5
N3—C11—C3121.11 (13)C9—C8—C7120.41 (14)
N3—C11—C12118.26 (13)C9—C8—H8119.8
C3—C11—C12120.63 (13)C7—C8—H8119.8
N4—C14—C14ii115.03 (17)C8—C9—C10119.99 (14)
N4—C14—C13124.25 (15)C8—C9—H9120.0
C14ii—C14—C13120.72 (16)C10—C9—H9120.0
C1—N1—O1112.39 (12)C11—C12—H12A109.5
C3—N2—C5118.23 (11)C11—C12—H12B109.5
C11—N3—C10118.35 (12)H12A—C12—H12B109.5
C14—N4—O2112.15 (13)C11—C12—H12C109.5
N1—O1—H1104.5 (14)H12A—C12—H12C109.5
N4—O2—H2102.4 (16)H12B—C12—H12C109.5
C1—C2—H2A109.5C14—C13—H13A109.5
C1—C2—H2B109.5C14—C13—H13B109.5
H2A—C2—H2B109.5H13A—C13—H13B109.5
C1—C2—H2C109.5C14—C13—H13C109.5
H2A—C2—H2C109.5H13A—C13—H13C109.5
H2B—C2—H2C109.5H13B—C13—H13C109.5
C1—C2—H2D109.5C14—C13—H13D109.5
H2A—C2—H2D141.1H13A—C13—H13D141.1
H2B—C2—H2D56.3H13B—C13—H13D56.3
H2C—C2—H2D56.3H13C—C13—H13D56.3
C1—C2—H2E109.5C14—C13—H13E109.5
H2A—C2—H2E56.3H13A—C13—H13E56.3
H2B—C2—H2E141.1H13B—C13—H13E141.1
H2C—C2—H2E56.3H13C—C13—H13E56.3
H2D—C2—H2E109.5H13D—C13—H13E109.5
C1—C2—H2F109.5C14—C13—H13F109.5
H2A—C2—H2F56.3H13A—C13—H13F56.3
H2B—C2—H2F56.3H13B—C13—H13F56.3
H2C—C2—H2F141.1H13C—C13—H13F141.1
H2D—C2—H2F109.5H13D—C13—H13F109.5
H2E—C2—H2F109.5H13E—C13—H13F109.5
N2—C5—C10—N32.0 (2)C3—C11—N3—C102.0 (2)
C6—C5—C10—N3178.67 (13)C12—C11—N3—C10177.37 (13)
N2—C5—C10—C9178.06 (13)C9—C10—N3—C11179.87 (13)
C6—C5—C10—C91.3 (2)C5—C10—N3—C110.1 (2)
N2—C3—C11—N32.0 (2)C14ii—C14—N4—O2179.87 (16)
C4—C3—C11—N3177.63 (13)C13—C14—N4—O20.8 (2)
N2—C3—C11—C12177.35 (14)N2—C5—C6—C7177.88 (14)
C4—C3—C11—C123.0 (2)C10—C5—C6—C71.5 (2)
C1i—C1—N1—O1179.87 (14)C5—C6—C7—C80.4 (3)
C2—C1—N1—O10.8 (2)C6—C7—C8—C90.9 (3)
C11—C3—N2—C50.1 (2)C7—C8—C9—C101.1 (3)
C4—C3—N2—C5179.73 (12)N3—C10—C9—C8179.93 (14)
C6—C5—N2—C3178.68 (13)C5—C10—C9—C80.0 (2)
C10—C5—N2—C32.0 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2iii0.85392.04512.8977176.30
O2—H2···N30.81801.99172.8053172.85
Symmetry code: (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N2·C4H8N2O2
Mr274.32
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.9814 (10), 8.2719 (10), 12.168 (3)
α, β, γ (°)91.779 (18), 106.668 (14), 111.018 (10)
V3)710.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(Fair, 1990)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2884, 2884, 2244
Rint0.000
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.08
No. of reflections2884
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: MolEN (Fair, 1990), MolEN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
C1—N11.2811 (18)C14—N41.2813 (19)
C1—C1i1.477 (3)C14—C14ii1.473 (3)
C1—C21.491 (2)C14—C131.499 (2)
C3—N21.3119 (18)N1—O11.4033 (16)
C5—N21.3723 (18)N4—O21.3956 (18)
C10—N31.3676 (19)O1—H10.85 (2)
C11—N31.3123 (19)O2—H20.82 (2)
N1—C1—C1i115.18 (15)C14ii—C14—C13120.72 (16)
N1—C1—C2124.09 (13)C1—N1—O1112.39 (12)
C1i—C1—C2120.73 (15)C3—N2—C5118.23 (11)
N2—C3—C11121.25 (12)C11—N3—C10118.35 (12)
N3—C11—C3121.11 (13)C14—N4—O2112.15 (13)
N4—C14—C14ii115.03 (17)N1—O1—H1104.5 (14)
N4—C14—C13124.25 (15)N4—O2—H2102.4 (16)
N2—C5—C10—N32.0 (2)C2—C1—N1—O10.8 (2)
N2—C3—C11—N32.0 (2)C13—C14—N4—O20.8 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2iii0.85392.04512.8977176.30
O2—H2···N30.81801.99172.8053172.85
Symmetry code: (iii) x, y1, z+1.
Comparison of the bond lengths (Å) and angles (°) in dimethylglyoxime moieties of (I) with the corresponding values in the related compounds (II), (III), (IV) and (V). top
(I)(II)(III)(IV)(V)
C1-Ctrans1.477 (3)1.473 (3)1.562 (18)1.531.5151.55
C1-Ccis1.491 (2)1.499 (2)1.479 (15)1.4851.471.49
C1-N11.281 (2)1.281 (2)1.253 (11)1.2251.251.29
N1-O11.403 (2)1.396 (2)1.321 (21)1.3751.3451.36
O1-H10.85 (2)0.82 (2)1.02 (4)---
Ccis-C1-Ctrans120.7 (2)120.7 (2)120.4122.5122.3117
N1-C1-Ctrans115.2 (2)115.0 (2)113.8111.0112.8113
N1-C1-Ccis124.1 (2)124.3 (2)126.0126.5124.9131
C1-N1-O1112.4 (2)112.2 (2)111.4121119.5111
N1-O1-H1104.5 (14)102.4 (16)109.6102--
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds