Download citation
Download citation
link to html
The title compound, 4,14-dioxa-9,11,17,19-tetra­thia-1,7,21,22-tetr­aaza­tri­cyclo­[16.2.1.17,10]­docosa-18(21),10(22)-diene-8,20-dione, C12H16N4O4S4, has crystallographic twofold symmetry, with a half mol­ecule in the asymmetric unit and a dihedral angle of 52.59 (6)° between the two planar five-membered rings of the macrocycle, giving the mol­ecule a twisted conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801006250/bt6031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801006250/bt6031Isup2.hkl
Contains datablock I

CCDC reference: 165660

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.035
  • wR factor = 0.089
  • Data-to-parameter ratio = 12.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_301 Alert C Main Residue Disorder ........................ 9.00 Perc. PLAT_302 Alert C Anion/Solvent Disorder ....................... 39.00 Perc. PLAT_320 Alert C Check Hybridisation of S1 in main residue ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

As a continuation of our studies of macrocyclic compounds containing 1,3,4-thiadiazole subunits (Cho, Park & Hwang, 1999; Cho, Park, Kim et al., 1999; Cho, Park, Hwang et al., 1999; Cho et al., 2000), we have turned our attention to macrocycles composed of two 5-mercapto-2,3-dihydro-1,3,4-thiadizole-2-one units. For the formation of macrocycle (I), these two heterocyclic rings are linked by ether chains. These compounds have been shown to be artificial receptors of transition metals (Cho, Park, Kim et al., 1999) and futhermore are potential hosts of small organic molecules. The determination of the structure of title compound, (I), is part a study of these macrocycles.

The title compound, (I), with the atom-labelling scheme is shown in Fig. 1. A half molecule belongs to an asymmetric unit and the other half molecule is generated by applying a twofold rotation [symmetry code: (i) -x, y, -z + 3/2] passing through O1 and O3. The S—C distances range from 1.674 (5) to 1.970 (9) Å, with a mean value of 1.782 (2) Å, and the N2—C4 and O2—C3 distances of 1.279 (3) and 1.215 (3) clearly show double-bond character. The remainder of the bonds are single bonds; in the five-membered ring, C3—S1—C4 = 88.89 (11)°. These values are comparable with those found in 4,17,25,26-tetraaza-6,9,12,15-tetraoxa-2,19,21,24-tetrathiatricyclo- [18.4.11,4.117,20]hexacosa-1(25),20 (26)-diene-3,5,16,18-tetraone (Cho et al., 2000) and 1,5-[5,5'-(1,3-phenylenedimethylenedithio)bis(2,3-dihydro-2-oxo- 1,3,4-thiadiazol-3-yl)]-3-oxapentane (Cho et al., 2001)

The five-membered ring, 5-mercapto-2,3-dihydro-1,3,4-thiadizole-2-one, is planar within 0.016 (1) Å and the ethyl ether linkage (atoms C2, C1, O1, C1i and C2i) is planar within 0.085 (2) Å. The dihedral angle between the five-membered ring and its own self-related by twofold symmetry is 52.59 (6)°, and the dihedral angle between the five-membered ring and the ethyl ether linkage is 79.02 (6)°. Therefore, the molecule has a twisted conformation with a C2—C1—O1—C1i torsion angle of 171.4 (2)°. The interatomic distances N1···N1i = 5.609 (4) Å, N2···N2i = 4.842 (4) Å, N2···O3 = 4.223 (3) Å, N2···S2i = 6.158 (2) Å, O1···O3 = 5.431 (3) Å and S2···S2i = 7.322 (2) Å appear to be sufficient to introduce a guest ion inside the molecule. The closest intermolecular distance is O2···H5A = 2.572 (5) Å.

Experimental top

The preparation of (I) followed the general procedure previously reported by Cho, Park, Kim et al. (1999). Details will be reported elsewhere.

Refinement top

Atoms C5 and C6 were disordered over two positions and their coordinates together with site-occupation factors were refined anisotropically using the PART command of SHELXL97 (Sheldrick, 1997). All H atoms were located geometrically with Uiso constrained to be 1.2 times the equivalent isotropic displacement of the parent atoms. The highest peak and deepest holes in the final difference density map are at 0.85 Å from H6A and 0.91 Å from S1, respectively.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) diagram of (I) showing 25% probability displacement ellipsoids. C atoms are shown with ellipsoids with only enveloping ellipses and the remaining atoms are shown with ellipsoids with octant shading. Only the asymmetric unit is labelled and H atoms have been omitted for clarity [symmetry code: (i) -x, y, -z + 3/2].
(I) top
Crystal data top
C12H16N4O4S4F(000) = 848
Mr = 408.53Dx = 1.517 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 8.7369 (8) ÅCell parameters from 25 reflections
b = 15.741 (3) Åθ = 11.4–13.7°
c = 13.3967 (12) ŵ = 0.56 mm1
β = 103.833 (8)°T = 293 K
V = 1788.9 (4) Å3Block, colorless
Z = 40.53 × 0.43 × 0.26 mm
Data collection top
Enraf Nonius CAD4
diffractometer
1201 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
non–profiled ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 1818
Tmin = 0.745, Tmax = 0.861l = 150
3139 measured reflections3 standard reflections every 300 min
1573 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.708P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1573 reflectionsΔρmax = 0.16 e Å3
130 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (6)
Crystal data top
C12H16N4O4S4V = 1788.9 (4) Å3
Mr = 408.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.7369 (8) ŵ = 0.56 mm1
b = 15.741 (3) ÅT = 293 K
c = 13.3967 (12) Å0.53 × 0.43 × 0.26 mm
β = 103.833 (8)°
Data collection top
Enraf Nonius CAD4
diffractometer
1201 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.745, Tmax = 0.8613 standard reflections every 300 min
3139 measured reflections intensity decay: none
1573 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
1573 reflectionsΔρmin = 0.20 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.02169 (9)0.17999 (5)0.40152 (5)0.0665 (3)
S20.10009 (10)0.34446 (5)0.46857 (6)0.0777 (3)
N10.1523 (2)0.15102 (12)0.58796 (13)0.0493 (5)
N20.0813 (2)0.22914 (11)0.58945 (14)0.0509 (5)
O10.00000.10389 (13)0.75000.0572 (6)
O20.1839 (2)0.04098 (12)0.48204 (14)0.0735 (5)
O30.00000.44894 (14)0.75000.0717 (7)
C10.1209 (3)0.05431 (15)0.72579 (19)0.0631 (7)
H1A0.07580.01230.67410.076*
H1B0.17910.02480.78660.076*
C20.2287 (3)0.11229 (16)0.68591 (18)0.0585 (7)
H2A0.26570.15670.73600.070*
H2B0.31980.08030.67770.070*
C30.1338 (3)0.11066 (16)0.49686 (18)0.0529 (6)
C40.0094 (3)0.25109 (15)0.49841 (18)0.0514 (6)
C5'0.0748 (6)0.3878 (3)0.6839 (4)0.0534 (17)0.491 (6)
H5'A0.05390.32940.70620.064*0.491 (6)
H5'B0.18470.39830.65110.064*0.491 (6)
C50.1169 (7)0.3735 (3)0.5857 (4)0.0545 (17)0.509 (6)
H5A0.21030.40680.58540.065*0.509 (6)
H5B0.10590.32690.63430.065*0.509 (6)
C60.0284 (11)0.4232 (6)0.6411 (6)0.0555 (18)0.491 (6)
H6A0.00940.46130.58360.067*0.491 (6)
H6B0.12310.39160.63940.067*0.491 (6)
C6'0.0104 (13)0.4112 (6)0.5932 (7)0.063 (2)0.509 (6)
H6'A0.08580.39070.63910.076*0.509 (6)
H6'B0.02110.47250.58910.076*0.509 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0779 (5)0.0815 (5)0.0381 (4)0.0132 (4)0.0099 (3)0.0048 (3)
S20.0926 (6)0.0697 (5)0.0616 (5)0.0137 (4)0.0002 (4)0.0224 (4)
N10.0549 (12)0.0526 (11)0.0406 (10)0.0094 (9)0.0120 (9)0.0051 (8)
N20.0632 (12)0.0485 (11)0.0411 (11)0.0082 (10)0.0126 (9)0.0008 (9)
O10.0811 (17)0.0388 (12)0.0541 (14)0.0000.0206 (12)0.000
O20.0798 (13)0.0742 (12)0.0709 (12)0.0070 (10)0.0270 (10)0.0252 (10)
O30.0890 (19)0.0428 (13)0.0758 (18)0.0000.0051 (14)0.000
C10.0887 (19)0.0455 (13)0.0500 (14)0.0132 (13)0.0064 (13)0.0015 (11)
C20.0636 (16)0.0573 (15)0.0491 (14)0.0180 (12)0.0028 (12)0.0026 (11)
C30.0502 (14)0.0637 (16)0.0482 (13)0.0054 (12)0.0188 (11)0.0098 (12)
C40.0529 (13)0.0573 (14)0.0430 (13)0.0060 (11)0.0094 (10)0.0054 (11)
C5'0.058 (3)0.049 (3)0.056 (4)0.002 (2)0.020 (2)0.001 (2)
C50.052 (3)0.043 (3)0.065 (4)0.005 (2)0.008 (3)0.004 (2)
C60.065 (5)0.041 (3)0.063 (5)0.000 (3)0.019 (4)0.001 (4)
C6'0.087 (7)0.036 (4)0.070 (6)0.004 (4)0.025 (5)0.009 (4)
Geometric parameters (Å, º) top
S1—C41.737 (2)O1—C11.412 (3)
S1—C31.784 (3)O2—C31.215 (3)
S2—C51.674 (5)O3—C5'1.365 (5)
S2—C41.747 (3)O3—C5'i1.365 (5)
S2—C6'1.970 (9)O3—C61.590 (8)
N1—C31.351 (3)O3—C6i1.590 (8)
N1—N21.380 (2)C1—C21.499 (3)
N1—C21.456 (3)C5'—C61.304 (11)
N2—C41.279 (3)C5'—C5'i1.934 (11)
O1—C1i1.412 (3)C5—C6'1.088 (11)
C4—S1—C388.89 (11)O1—C1—C2108.28 (18)
C5—S2—C4100.42 (18)N1—C2—C1112.6 (2)
C5—S2—C6'33.5 (3)O2—C3—N1127.0 (2)
C4—S2—C6'99.8 (3)O2—C3—S1126.36 (19)
C3—N1—N2118.37 (18)N1—C3—S1106.60 (17)
C3—N1—C2123.19 (19)N2—C4—S1115.76 (18)
N2—N1—C2118.09 (17)N2—C4—S2124.25 (18)
C4—N2—N1110.31 (18)S1—C4—S2119.97 (14)
C1i—O1—C1112.9 (3)C6—C5'—O373.1 (4)
C5'—O3—C5'i90.2 (4)C6—C5'—C5'i90.9 (5)
C5'—O3—C651.7 (4)O3—C5'—C5'i44.9 (2)
C5'i—O3—C6105.1 (4)C6'—C5—S288.3 (6)
C5'—O3—C6i105.1 (4)C5'—C6—O355.2 (4)
C5'i—O3—C6i51.7 (4)C5—C6'—S258.2 (5)
C6—O3—C6i150.5 (7)
C3—N1—N2—C41.4 (3)C3—S1—C4—S2176.91 (15)
C2—N1—N2—C4174.9 (2)C5—S2—C4—N214.0 (3)
C1i—O1—C1—C2171.4 (2)C6'—S2—C4—N220.1 (4)
C3—N1—C2—C180.7 (3)C5—S2—C4—S1164.5 (2)
N2—N1—C2—C192.4 (2)C6'—S2—C4—S1161.4 (3)
O1—C1—C2—N166.3 (2)C5'i—O3—C5'—C6109.2 (5)
N2—N1—C3—O2177.7 (2)C6i—O3—C5'—C6159.3 (5)
C2—N1—C3—O24.7 (4)C6—O3—C5'—C5'i109.2 (5)
N2—N1—C3—S12.6 (2)C6i—O3—C5'—C5'i50.1 (4)
C2—N1—C3—S1175.63 (18)C4—S2—C5—C6'92.0 (5)
C4—S1—C3—O2178.1 (2)C5'i—C5'—C6—O341.8 (2)
C4—S1—C3—N12.22 (17)C5'i—O3—C6—C5'78.0 (6)
N1—N2—C4—S10.6 (3)C6i—O3—C6—C5'43.8 (3)
N1—N2—C4—S2177.96 (16)C4—S2—C6'—C594.2 (5)
C3—S1—C4—N21.7 (2)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H16N4O4S4
Mr408.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)8.7369 (8), 15.741 (3), 13.3967 (12)
β (°) 103.833 (8)
V3)1788.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.53 × 0.43 × 0.26
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.745, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
3139, 1573, 1201
Rint0.026
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.02
No. of reflections1573
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C41.737 (2)S2—C6'1.970 (9)
S1—C31.784 (3)N2—C41.279 (3)
S2—C51.674 (5)O2—C31.215 (3)
S2—C41.747 (3)
C4—S1—C388.89 (11)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds