Download citation
Download citation
link to html
A series of derivatives of 3-amino-2-oxazolidinone have been prepared. The 5-morpholino­methyl-3-(4-chloro­benzyl­idene­amino)-2-ox­azol­idin­one derivative is a potential psychotropic drug. Preliminary clinical data showed that the compound exhibits antidepressive activity in humans. The molecular geometry of the title compound, C15H18FN3O3, is similar to 5-morpholino­methyl-3-(4-chloro­benzyl­idene­amino)-2-ox­azol­idin­one. Two atoms of the title compound are disordered so that two different conformations of the ox­azol­idin­one ring were found; one is a twist and the other is an envelope con­formation. The crystal structure of title compound is formed by weak intermolecular C—H...O hydrogen bonds resulting in a two-dimensional infinite hydrogen-bond network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005487/bt6030sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005487/bt6030Isup2.hkl
Contains datablock I

CCDC reference: 165640

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.075
  • wR factor = 0.177
  • Data-to-parameter ratio = 12.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_301 Alert C Main Residue Disorder ........................ 8.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In the Pharmaceutical Research Institute in Warsaw, a series of derivatives of 3-amino-2-oxazolidinone have been prepared (Chilmonczyk et al., 1997). It has been found that the oxazolidinone derivative 5-morpholinomethyl-3-(4-chlorobenzylideneamino)-2-oxazolidinone, (II), is a potential psychotropic drug (Chilmonczyk, 1995). Preliminary clinical data show that the compound exhibits antidepressive activity in humans (Rybakowski & Araszkiewicz, 1999). It can be supposed that other derivatives of this class can also exhibit biological activity. It is generally accepted that a specific,energetically preferred conformation of a compound (so-called bioactive conformation) decides about the nature of interactions with its molecular target or pharmacological receptor. Therefore, it is of basic importance to get an insight into such molecular parameters as charge distribution, the most preferred conformation or distances between specified points within a molecule (Krzywda et al., 2000).

A perspective view of the title compound, (I), together with the atom-numbering scheme are shown in Fig. 1. A l l interatomic distances are normal. The molecular geometry of (I) is similar to the chloride monohydrate of (II) (Bartczak et al., 2001). The weighted r.m.s. deviation for all atoms of (I) and the inverted molecule of (II) is 0.218 (2) Å. A fit of (I) and (II) is depicted in Fig. 2. Bartczak et al. (2001) found that the primary place of molecular interaction with an acid residue within a putative receptor site is on N1. Thus, we can suppose that for (I) proton transfer also occurs from the acid residue, and (I) will be interacting by the same N1 atom. The oxazolidinone ring exists in a twist and an envelope conformation shown by the asymmetry parameters; ΔC2 = 2.77 (5) and ΔCs = 4.62 (5), and ΔC2 = 13.66 (8) and ΔCs = 2.90 (6), respectively (Duax & Norton, 1975). According to asymmetry parameters, the morpholine ring exists in an almost ideal chair conformation. The structure of (I) is assembled by intermolecular weak C—H···O hydrogen bonds into a two-dimensional infinite hydrogen bond network (Fig. 3 and Table 2). The absence of an intermolecular hydrogen bond linking C1 and O2 in (I), which creates a fused three-membered ring system in (II), could be one of the reasons for the disorder observed in (I).

The decreased number of hydrogen bonds and its weakening in (I) does not change the molecular geometry, what suggests that inserting hydrochloric acid into the structure, even if it increases the number of hydrogen bonds, does not change its geometry and can eliminate disorder.

Experimental top

The title compound was prepared according to the method of Chilmonczyk et al. (1997).

Computing details top

Data collection: CrysAlis CCD (UNIL IC & Kuma, 2000); cell refinement: CrysAlis RED (UNIL IC & Kuma, 2000); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1990b) ORTEP-3 (Farrugia 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. The disordered part is indicated by dashed lines.
[Figure 2] Fig. 2. Fit of inverted (I) and (II). The structure of (II) is indicated by dashed lines. The disordered atoms have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of (I) showing intermolecular hydrogen bonds creating a two-dimensional net structure. Hydrogen bonds are indicated by dashed lines.
4-{3-[(4-Fluorobenzylidene)amino]-2-oxo-1,3-oxazolidin-5-ylmethyl}morpholine top
Crystal data top
C15H18FN3O3F(000) = 324
Mr = 307.32Dx = 1.371 Mg m3
Triclinic, P1Melting point: 432.6-433.5 K K
a = 6.4808 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9636 (9) ÅCell parameters from 1319 reflections
c = 12.2753 (11) Åθ = 5–22°
α = 91.600 (9)°µ = 0.11 mm1
β = 101.048 (10)°T = 291 K
γ = 106.114 (12)°Plate, colourless
V = 744.62 (12) Å30.30 × 0.11 × 0.08 mm
Z = 2
Data collection top
Kuma KM4-CCD
diffractometer
2638 independent reflections
Radiation source: fine-focus sealed tube2090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 25.1°, θmin = 3.4°
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
h = 77
Tmin = 0.969, Tmax = 0.992k = 1111
2638 measured reflectionsl = 014
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.2292P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
2638 reflectionsΔρmax = 0.20 e Å3
219 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (5)
Crystal data top
C15H18FN3O3γ = 106.114 (12)°
Mr = 307.32V = 744.62 (12) Å3
Triclinic, P1Z = 2
a = 6.4808 (7) ÅMo Kα radiation
b = 9.9636 (9) ŵ = 0.11 mm1
c = 12.2753 (11) ÅT = 291 K
α = 91.600 (9)°0.30 × 0.11 × 0.08 mm
β = 101.048 (10)°
Data collection top
Kuma KM4-CCD
diffractometer
2638 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
2090 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.992Rint = 0.000
2638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.20Δρmax = 0.20 e Å3
2638 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1389 (5)0.2692 (3)0.8864 (3)0.0623 (8)
H1A0.02540.34750.92980.075*
H1B0.08160.23750.82630.075*
C20.2009 (6)0.1533 (4)0.9585 (3)0.0730 (10)
H2A0.30820.07350.91360.088*
H2B0.07220.12440.98950.088*
O10.2894 (5)0.1940 (3)1.04620 (19)0.0946 (9)
C30.4751 (6)0.2383 (5)1.0036 (3)0.0888 (12)
H3A0.53000.26941.06490.107*
H3B0.58980.15970.96130.107*
C40.4230 (6)0.3549 (4)0.9303 (3)0.0799 (11)
H4A0.55570.37920.89910.096*
H4B0.31930.43700.97410.096*
N10.3302 (4)0.3137 (3)0.8410 (2)0.0657 (8)
C5A0.2649 (9)0.4568 (6)0.7954 (5)0.0528 (19)0.571 (9)
H5A10.39100.49280.77860.063*0.571 (9)
H5A20.15190.52250.85050.063*0.571 (9)
C6A0.1805 (9)0.4409 (8)0.6916 (6)0.0491 (16)0.571 (9)
H6A0.24490.34760.65150.059*0.571 (9)
C5B0.3304 (10)0.3687 (8)0.7263 (6)0.045 (2)0.429 (9)
H5B10.29700.30290.67750.054*0.429 (9)
H5B20.47520.37630.69440.054*0.429 (9)
C6B0.1636 (12)0.5100 (11)0.7339 (7)0.046 (2)0.429 (9)
H6B0.15740.57560.79620.055*0.429 (9)
C80.2067 (4)0.5637 (4)0.6167 (3)0.0633 (9)
H8A0.30400.52810.54520.076*
H8B0.26150.63000.65350.076*
N20.0155 (4)0.6262 (3)0.6047 (2)0.0643 (8)
C70.1620 (4)0.5715 (3)0.6681 (3)0.0596 (8)
O20.0568 (3)0.4768 (2)0.72964 (19)0.0747 (7)
O30.3540 (3)0.5969 (3)0.6704 (2)0.0831 (8)
N30.0861 (4)0.7241 (2)0.53426 (19)0.0532 (6)
C90.0568 (4)0.7691 (3)0.4718 (2)0.0491 (7)
H90.20450.73310.47390.059*
C100.0094 (4)0.8765 (3)0.3973 (2)0.0445 (6)
C110.2295 (4)0.9442 (3)0.4010 (2)0.0531 (7)
H110.33660.91910.45120.064*
C120.2925 (5)1.0474 (3)0.3320 (2)0.0591 (8)
H120.44011.09260.33510.071*
C130.1316 (5)1.0815 (3)0.2588 (2)0.0589 (8)
C140.0859 (5)1.0196 (3)0.2522 (2)0.0593 (8)
H140.19101.04610.20170.071*
C150.1475 (5)0.9160 (3)0.3225 (2)0.0548 (7)
H150.29560.87260.31940.066*
F10.1919 (3)1.1824 (2)0.18925 (16)0.0858 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0587 (18)0.0667 (19)0.071 (2)0.0278 (15)0.0198 (15)0.0281 (16)
C20.096 (2)0.079 (2)0.061 (2)0.0444 (19)0.0280 (18)0.0310 (18)
O10.112 (2)0.139 (2)0.0575 (14)0.0628 (18)0.0329 (14)0.0357 (15)
C30.093 (3)0.120 (3)0.073 (2)0.042 (2)0.045 (2)0.028 (2)
C40.065 (2)0.071 (2)0.118 (3)0.0304 (18)0.036 (2)0.016 (2)
N10.0506 (14)0.0818 (18)0.0805 (18)0.0293 (13)0.0302 (13)0.0502 (15)
C5A0.054 (3)0.058 (4)0.054 (4)0.023 (3)0.017 (3)0.018 (3)
C6A0.040 (3)0.057 (4)0.056 (4)0.020 (3)0.015 (3)0.015 (3)
C5B0.034 (3)0.048 (4)0.050 (4)0.005 (3)0.009 (3)0.019 (4)
C6B0.039 (4)0.057 (6)0.049 (5)0.016 (4)0.023 (3)0.018 (4)
C80.0394 (15)0.093 (2)0.0670 (19)0.0227 (15)0.0223 (13)0.0443 (17)
N20.0390 (12)0.0868 (18)0.0774 (17)0.0229 (12)0.0237 (12)0.0490 (15)
C70.0424 (16)0.070 (2)0.074 (2)0.0199 (14)0.0203 (14)0.0348 (16)
O20.0434 (11)0.0971 (17)0.0905 (16)0.0219 (11)0.0206 (11)0.0588 (14)
O30.0381 (11)0.1048 (18)0.118 (2)0.0279 (11)0.0257 (12)0.0564 (16)
N30.0481 (13)0.0596 (14)0.0585 (14)0.0158 (11)0.0231 (11)0.0270 (12)
C90.0430 (14)0.0587 (17)0.0496 (15)0.0152 (12)0.0167 (12)0.0150 (13)
C100.0484 (14)0.0470 (15)0.0390 (14)0.0126 (12)0.0125 (11)0.0090 (12)
C110.0499 (16)0.0579 (17)0.0482 (16)0.0103 (13)0.0089 (12)0.0128 (13)
C120.0543 (17)0.0582 (18)0.0594 (18)0.0041 (14)0.0151 (14)0.0151 (15)
C130.076 (2)0.0518 (17)0.0488 (16)0.0112 (15)0.0219 (15)0.0180 (14)
C140.0657 (18)0.0637 (19)0.0520 (17)0.0229 (15)0.0119 (14)0.0211 (15)
C150.0496 (16)0.0610 (18)0.0560 (17)0.0171 (13)0.0130 (13)0.0157 (14)
F10.1029 (15)0.0773 (13)0.0717 (12)0.0103 (11)0.0236 (11)0.0387 (11)
Geometric parameters (Å, º) top
C1—N11.448 (3)C6B—C81.551 (8)
C1—C21.488 (4)C6B—O21.563 (8)
C1—H1A0.9700C6B—H6B0.9800
C1—H1B0.9700C8—N21.440 (3)
C2—O11.412 (4)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700N2—C71.353 (3)
O1—C31.409 (4)N2—N31.363 (3)
C3—C41.493 (5)C7—O31.193 (3)
C3—H3A0.9700C7—O21.344 (3)
C3—H3B0.9700N3—C91.275 (3)
C4—N11.448 (4)C9—C101.455 (3)
C4—H4A0.9700C9—H90.9300
C4—H4B0.9700C10—C151.384 (4)
N1—C5B1.525 (6)C10—C111.390 (4)
N1—C5A1.525 (6)C11—C121.374 (4)
C5A—C6A1.501 (10)C11—H110.9300
C5A—H5A10.9700C12—C131.366 (4)
C5A—H5A20.9700C12—H120.9300
C6A—O21.457 (6)C13—C141.358 (4)
C6A—C81.578 (6)C13—F11.360 (3)
C6A—H6A0.9800C14—C151.387 (4)
C5B—C6B1.506 (13)C14—H140.9300
C5B—H5B10.9700C15—H150.9300
C5B—H5B20.9700
N1—C1—C2109.4 (2)H5B1—C5B—H5B2108.0
N1—C1—H1A109.8C5B—C6B—C8105.5 (7)
C2—C1—H1A109.8C5B—C6B—O2104.8 (7)
N1—C1—H1B109.8C8—C6B—O298.6 (4)
C2—C1—H1B109.8C5B—C6B—H6B115.3
H1A—C1—H1B108.2C8—C6B—H6B115.3
O1—C2—C1111.8 (3)O2—C6B—H6B115.3
O1—C2—H2A109.3N2—C8—C6B100.2 (3)
C1—C2—H2A109.3N2—C8—C6A101.8 (3)
O1—C2—H2B109.3C6B—C8—C6A30.3 (3)
C1—C2—H2B109.3N2—C8—H8A111.4
H2A—C2—H2B107.9C6B—C8—H8A136.6
C3—O1—C2110.5 (3)C6A—C8—H8A111.4
O1—C3—C4111.7 (3)N2—C8—H8B111.4
O1—C3—H3A109.3C6B—C8—H8B84.4
C4—C3—H3A109.3C6A—C8—H8B111.4
O1—C3—H3B109.3H8A—C8—H8B109.3
C4—C3—H3B109.3C7—N2—N3119.3 (2)
H3A—C3—H3B107.9C7—N2—C8113.1 (2)
N1—C4—C3110.5 (3)N3—N2—C8127.5 (2)
N1—C4—H4A109.6O3—C7—O2122.9 (3)
C3—C4—H4A109.6O3—C7—N2127.9 (3)
N1—C4—H4B109.6O2—C7—N2109.2 (2)
C3—C4—H4B109.6C7—O2—C6A111.5 (3)
H4A—C4—H4B108.1C7—O2—C6B106.5 (3)
C1—N1—C4110.1 (3)C6A—O2—C6B31.2 (3)
C1—N1—C5B114.3 (3)C9—N3—N2118.0 (2)
C4—N1—C5B129.0 (4)N3—C9—C10120.5 (2)
C1—N1—C5A111.2 (3)N3—C9—H9119.8
C4—N1—C5A97.3 (3)C10—C9—H9119.8
C5B—N1—C5A43.6 (3)C15—C10—C11118.4 (2)
C6A—C5A—N1108.6 (5)C15—C10—C9120.2 (2)
C6A—C5A—H5A1110.0C11—C10—C9121.3 (2)
N1—C5A—H5A1110.0C12—C11—C10121.5 (3)
C6A—C5A—H5A2110.0C12—C11—H11119.3
N1—C5A—H5A2110.0C10—C11—H11119.3
H5A1—C5A—H5A2108.3C13—C12—C11117.9 (3)
O2—C6A—C5A104.4 (6)C13—C12—H12121.1
O2—C6A—C8102.0 (4)C11—C12—H12121.1
C5A—C6A—C8109.4 (5)C14—C13—F1118.4 (3)
O2—C6A—H6A113.4C14—C13—C12123.2 (3)
C5A—C6A—H6A113.4F1—C13—C12118.4 (3)
C8—C6A—H6A113.4C13—C14—C15118.4 (3)
C6B—C5B—N1111.0 (6)C13—C14—H14120.8
C6B—C5B—H5B1109.4C15—C14—H14120.8
N1—C5B—H5B1109.4C10—C15—C14120.7 (3)
C6B—C5B—H5B2109.4C10—C15—H15119.7
N1—C5B—H5B2109.4C14—C15—H15119.7
O2—C7—N2—C82.9 (4)N1—C5A—C6A—C8156.2 (4)
C7—N2—C8—C6A6.8 (5)C1—N1—C5B—C6B71.8 (7)
N2—C8—C6A—O212.9 (5)N1—C5B—C6B—O285.4 (7)
C8—C6A—O2—C715.9 (6)N1—C5B—C6B—C8171.1 (4)
C6A—O2—C7—N212.6 (5)C1—C2—O1—C358.1 (4)
C7—N2—C8—C6B24.1 (6)C2—O1—C3—C456.6 (4)
N2—C8—C6B—O232.0 (6)O1—C3—C4—N156.1 (4)
C8—C6B—O2—C732.9 (6)C3—C4—N1—C155.9 (4)
C6B—O2—C7—N220.1 (5)C4—N1—C1—C256.7 (4)
C1—N1—C5A—C6A70.5 (5)N1—C1—C2—O158.3 (4)
N1—C5A—C6A—O295.2 (6)N2—N3—C9—C10178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A1···O3i0.972.403.314 (5)157
C8—H8B···O3i0.972.473.143 (3)126
C14—H14···O1ii0.932.543.375 (4)150
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC15H18FN3O3
Mr307.32
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)6.4808 (7), 9.9636 (9), 12.2753 (11)
α, β, γ (°)91.600 (9), 101.048 (10), 106.114 (12)
V3)744.62 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.11 × 0.08
Data collection
DiffractometerKuma KM4-CCD
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1999)
Tmin, Tmax0.969, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2638, 2638, 2090
Rint0.000
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.177, 1.20
No. of reflections2638
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CrysAlis CCD (UNIL IC & Kuma, 2000), CrysAlis RED (UNIL IC & Kuma, 2000), CrysAlis RED, SHELXS97 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1990b) ORTEP-3 (Farrugia 1997), SHELXL97.

Selected torsion angles (º) top
O2—C7—N2—C82.9 (4)N1—C5A—C6A—C8156.2 (4)
C7—N2—C8—C6A6.8 (5)C1—N1—C5B—C6B71.8 (7)
N2—C8—C6A—O212.9 (5)N1—C5B—C6B—O285.4 (7)
C8—C6A—O2—C715.9 (6)N1—C5B—C6B—C8171.1 (4)
C6A—O2—C7—N212.6 (5)C1—C2—O1—C358.1 (4)
C7—N2—C8—C6B24.1 (6)C2—O1—C3—C456.6 (4)
N2—C8—C6B—O232.0 (6)O1—C3—C4—N156.1 (4)
C8—C6B—O2—C732.9 (6)C3—C4—N1—C155.9 (4)
C6B—O2—C7—N220.1 (5)C4—N1—C1—C256.7 (4)
C1—N1—C5A—C6A70.5 (5)N1—C1—C2—O158.3 (4)
N1—C5A—C6A—O295.2 (6)N2—N3—C9—C10178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A1···O3i0.972.403.314 (5)157.0
C8—H8B···O3i0.972.473.143 (3)126.2
C14—H14···O1ii0.932.543.375 (4)150.2
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds