organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-2-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak Technical University, Namestie slobody 17, SK-812 31 Bratislava, Slovak Republic, and cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 November 2011; accepted 25 November 2011; online 30 November 2011)

In the title compound, C16H17NO, the two aromatic rings make a dihedral angle of 5.9 (2)°, while the central amide core –NH—C(=O)– is twisted by 44.0 (3) and 47.1 (3)° out of the planes of the 2,3-dimethyl­phenyl and 2-methyl­phenyl rings, respectively. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the b axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]) on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch.Teil A, 59, 491-500.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-chloro­aryl­amides, see: Gowda et al. (1996[Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627-636.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Monoclinic, P c

  • a = 5.8092 (4) Å

  • b = 4.9253 (2) Å

  • c = 23.1887 (12) Å

  • β = 94.229 (5)°

  • V = 661.67 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.50 × 0.30 × 0.10 mm

Data collection
  • Oxford Diffractio Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.962, Tmax = 0.993

  • 9487 measured reflections

  • 1162 independent reflections

  • 1021 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.208

  • S = 1.10

  • 1162 reflections

  • 170 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.23 (5) 2.903 (6) 136 (6)
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda et al., 1996), in the present work, the crystal structure of N-(2,3-dimethylphenyl)-2-methylbenzamide (I) has been determined (Fig. 1).

In (I), the two aromatic rings make the dihedral angle of 5.9 (2)°, while the central amide core –NH—C(=O)– is twisted by 44.0 (3) ° and 47.1 (3)° out of the planes of the 2,3-dimethylphenyl and 2-methylphenyl rings, respectively.

Further, the ortho-methyl group in the benzoyl ring is positioned syn to the C=O bond and so also the ortho- and meta- methyl groups in the anilino ring to the N—H bond, while the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010) on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylamides, see: Gowda et al. (1996).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All hydrogen atoms except amide H atom were placed in calculated positions with C–H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. The amide H atom was found in a difference map and was refined with the N—H distance restrained to 0.86 (3) Å. The Uĩso~(H) values were set at 1.2Ueq(C-aromatic, N) or 1.5Ueq(C-methyl). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda et al., 1996), in the present work, the crystal structure of N-(2,3-dimethylphenyl)-2-methylbenzamide (I) has been determined (Fig. 1).

In (I), the two aromatic rings make the dihedral angle of 5.9 (2)°, while the central amide core –NH—C(=O)– is twisted by 44.0 (3) ° and 47.1 (3)° out of the planes of the 2,3-dimethylphenyl and 2-methylphenyl rings, respectively.

Further, the ortho-methyl group in the benzoyl ring is positioned syn to the C=O bond and so also the ortho- and meta- methyl groups in the anilino ring to the N—H bond, while the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010) on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylamides, see: Gowda et al. (1996).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along b axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in H-bonding have been omitted.
N-(2,3-Dimethylphenyl)-2-methylbenzamide top
Crystal data top
C16H17NOF(000) = 256
Mr = 239.31Dx = 1.201 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 6163 reflections
a = 5.8092 (4) Åθ = 3.5–25.0°
b = 4.9253 (2) ŵ = 0.08 mm1
c = 23.1887 (12) ÅT = 295 K
β = 94.229 (5)°Plate, colourless
V = 661.67 (6) Å30.50 × 0.30 × 0.10 mm
Z = 2
Data collection top
Oxford Diffractio Xcalibur System
diffractometer
1162 independent reflections
Radiation source: fine-focus sealed tube1021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.5°
\j scans, and ω scans with κ offsetsh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 55
Tmin = 0.962, Tmax = 0.993l = 2727
9487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.122P)2 + 0.430P]
where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H17NOV = 661.67 (6) Å3
Mr = 239.31Z = 2
Monoclinic, PcMo Kα radiation
a = 5.8092 (4) ŵ = 0.08 mm1
b = 4.9253 (2) ÅT = 295 K
c = 23.1887 (12) Å0.50 × 0.30 × 0.10 mm
β = 94.229 (5)°
Data collection top
Oxford Diffractio Xcalibur System
diffractometer
1162 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1021 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.993Rint = 0.043
9487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0683 restraints
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.29 e Å3
1162 reflectionsΔρmin = 0.23 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7345 (9)0.2228 (10)0.2068 (2)0.0440 (13)
C20.9138 (11)0.3524 (12)0.1826 (3)0.0507 (14)
C30.9528 (11)0.3043 (14)0.1241 (3)0.0582 (16)
C40.8099 (14)0.1135 (15)0.0929 (3)0.069 (2)
H40.83640.07390.05480.083*
C50.6384 (13)0.0099 (15)0.1175 (3)0.0661 (19)
H50.54560.13240.09590.079*
C60.5950 (12)0.0403 (13)0.1744 (3)0.0582 (16)
H60.47400.04710.19090.070*
C71.0716 (12)0.5454 (14)0.2186 (4)0.069 (2)
H7A1.22420.53800.20540.104*
H7B1.07680.49240.25850.104*
H7C1.01300.72720.21450.104*
C81.1354 (16)0.4573 (18)0.0958 (4)0.081 (2)
H8A1.16080.37460.05930.122*
H8B1.27610.45380.12030.122*
H8C1.08680.64200.08960.122*
C90.6479 (10)0.0862 (11)0.3048 (2)0.0446 (13)
C100.6090 (11)0.1940 (11)0.3638 (2)0.0485 (14)
C110.4282 (10)0.1026 (12)0.3934 (3)0.0520 (15)
C120.4113 (16)0.2012 (17)0.4479 (3)0.075 (2)
H120.29080.14110.46890.090*
C130.5661 (15)0.3872 (16)0.4731 (3)0.072 (2)
H130.54720.45190.51020.086*
C140.7478 (14)0.4764 (15)0.4435 (3)0.0680 (19)
H140.85400.59960.46030.082*
C150.7695 (10)0.3809 (13)0.3890 (3)0.0528 (15)
H150.89130.43970.36830.063*
C160.2533 (14)0.0985 (15)0.3695 (4)0.074 (2)
H16A0.12240.09720.39250.111*
H16B0.32060.27660.37030.111*
H16C0.20460.05080.33040.111*
N10.6911 (9)0.2757 (9)0.2654 (2)0.0478 (12)
H10.756 (11)0.427 (8)0.276 (3)0.06 (2)*
O10.6366 (11)0.1558 (8)0.2943 (2)0.0708 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.029 (2)0.049 (3)0.002 (2)0.003 (2)0.003 (2)
C20.059 (4)0.029 (3)0.063 (4)0.005 (2)0.000 (3)0.001 (2)
C30.057 (4)0.052 (4)0.066 (4)0.005 (3)0.008 (3)0.015 (3)
C40.098 (6)0.065 (4)0.044 (3)0.012 (4)0.007 (4)0.003 (3)
C50.090 (5)0.056 (4)0.050 (4)0.014 (4)0.005 (3)0.013 (3)
C60.072 (4)0.047 (3)0.055 (4)0.010 (3)0.001 (3)0.006 (3)
C70.062 (4)0.052 (4)0.094 (5)0.021 (3)0.005 (3)0.012 (4)
C80.094 (5)0.077 (5)0.076 (5)0.006 (5)0.025 (4)0.023 (4)
C90.053 (3)0.032 (3)0.049 (3)0.002 (2)0.007 (2)0.000 (2)
C100.068 (4)0.031 (3)0.046 (3)0.008 (3)0.002 (3)0.002 (2)
C110.056 (4)0.036 (3)0.065 (4)0.001 (3)0.007 (3)0.003 (3)
C120.091 (6)0.070 (5)0.064 (4)0.002 (4)0.015 (4)0.009 (4)
C130.103 (6)0.061 (4)0.049 (4)0.006 (4)0.001 (4)0.001 (3)
C140.086 (5)0.059 (4)0.058 (4)0.008 (4)0.001 (3)0.010 (3)
C150.059 (4)0.048 (3)0.051 (3)0.006 (3)0.001 (3)0.002 (3)
C160.072 (5)0.048 (4)0.104 (6)0.012 (3)0.011 (4)0.008 (4)
N10.060 (3)0.028 (2)0.056 (3)0.008 (2)0.012 (2)0.004 (2)
O10.120 (4)0.028 (2)0.066 (3)0.003 (2)0.019 (2)0.001 (2)
Geometric parameters (Å, º) top
C1—C21.376 (9)C9—O11.217 (7)
C1—C61.392 (8)C9—N11.342 (7)
C1—N11.424 (7)C9—C101.502 (8)
C2—C31.412 (9)C10—C111.373 (9)
C2—C71.526 (9)C10—C151.406 (9)
C3—C41.416 (10)C11—C121.362 (10)
C3—C81.491 (11)C11—C161.496 (9)
C4—C51.330 (11)C12—C131.383 (11)
C4—H40.9300C12—H120.9300
C5—C61.385 (10)C13—C141.374 (11)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—C151.363 (10)
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600C15—H150.9300
C7—H7C0.9600C16—H16A0.9600
C8—H8A0.9600C16—H16B0.9600
C8—H8B0.9600C16—H16C0.9600
C8—H8C0.9600N1—H10.860 (5)
C2—C1—C6120.5 (5)O1—C9—N1123.8 (6)
C2—C1—N1119.8 (5)O1—C9—C10121.2 (5)
C6—C1—N1119.7 (5)N1—C9—C10115.0 (5)
C1—C2—C3119.6 (5)C11—C10—C15121.0 (5)
C1—C2—C7120.5 (6)C11—C10—C9120.8 (5)
C3—C2—C7119.9 (6)C15—C10—C9118.0 (6)
C2—C3—C4118.1 (6)C12—C11—C10117.2 (6)
C2—C3—C8120.5 (7)C12—C11—C16119.1 (6)
C4—C3—C8121.4 (7)C10—C11—C16123.7 (6)
C5—C4—C3121.0 (6)C11—C12—C13122.6 (7)
C5—C4—H4119.5C11—C12—H12118.7
C3—C4—H4119.5C13—C12—H12118.7
C4—C5—C6121.4 (6)C14—C13—C12120.0 (7)
C4—C5—H5119.3C14—C13—H13120.0
C6—C5—H5119.3C12—C13—H13120.0
C5—C6—C1119.3 (6)C15—C14—C13118.7 (7)
C5—C6—H6120.3C15—C14—H14120.6
C1—C6—H6120.3C13—C14—H14120.6
C2—C7—H7A109.5C14—C15—C10120.4 (6)
C2—C7—H7B109.5C14—C15—H15119.8
H7A—C7—H7B109.5C10—C15—H15119.8
C2—C7—H7C109.5C11—C16—H16A109.5
H7A—C7—H7C109.5C11—C16—H16B109.5
H7B—C7—H7C109.5H16A—C16—H16B109.5
C3—C8—H8A109.5C11—C16—H16C109.5
C3—C8—H8B109.5H16A—C16—H16C109.5
H8A—C8—H8B109.5H16B—C16—H16C109.5
C3—C8—H8C109.5C9—N1—C1125.3 (5)
H8A—C8—H8C109.5C9—N1—H1121 (5)
H8B—C8—H8C109.5C1—N1—H1108 (5)
C6—C1—C2—C31.5 (8)N1—C9—C10—C1549.1 (7)
N1—C1—C2—C3178.5 (5)C15—C10—C11—C120.2 (9)
C6—C1—C2—C7178.0 (6)C9—C10—C11—C12177.0 (6)
N1—C1—C2—C72.0 (8)C15—C10—C11—C16179.2 (6)
C1—C2—C3—C42.6 (9)C9—C10—C11—C162.4 (9)
C7—C2—C3—C4176.9 (6)C10—C11—C12—C130.5 (11)
C1—C2—C3—C8175.6 (6)C16—C11—C12—C13179.9 (8)
C7—C2—C3—C84.9 (9)C11—C12—C13—C141.0 (13)
C2—C3—C4—C52.4 (10)C12—C13—C14—C150.8 (12)
C8—C3—C4—C5175.9 (7)C13—C14—C15—C100.2 (11)
C3—C4—C5—C60.9 (12)C11—C10—C15—C140.3 (10)
C4—C5—C6—C10.3 (11)C9—C10—C15—C14177.2 (6)
C2—C1—C6—C50.0 (9)O1—C9—N1—C11.4 (10)
N1—C1—C6—C5180.0 (6)C10—C9—N1—C1179.7 (6)
O1—C9—C10—C1145.0 (9)C2—C1—N1—C9134.7 (6)
N1—C9—C10—C11133.9 (6)C6—C1—N1—C945.3 (8)
O1—C9—C10—C15132.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.23 (5)2.903 (6)136 (6)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupMonoclinic, Pc
Temperature (K)295
a, b, c (Å)5.8092 (4), 4.9253 (2), 23.1887 (12)
β (°) 94.229 (5)
V3)661.67 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.30 × 0.10
Data collection
DiffractometerOxford Diffractio Xcalibur System
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.962, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9487, 1162, 1021
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.208, 1.10
No. of reflections1162
No. of parameters170
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.860 (5)2.23 (5)2.903 (6)136 (6)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. JS, VV and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202/10) for financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627–636.  CAS Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch.Teil A, 59, 491–500.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds