organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(4-methyl­phen­yl)-5-phenyl-4-phenyl­sulfon­yl-1H-pyrazole-3-carboxyl­ate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 7 September 2011; accepted 8 September 2011; online 14 September 2011)

The title compound, C25H22N2O4S, features a tetra-substituted pyrazole ring. The dihedral angles formed between the five-membered ring (r.m.s. deviation = 0.007 Å) and the N- and C-bound phenyl rings are 48.10 (7) and 72.01 (7) °, respectively, indicating that the planes through the residues are significantly twisted from the plane through the heterocycle. The ester-CO2 group is also twisted out of this plane, with an O—C—C—N torsion angle of −29.04 (11)°. The sulfonyl-O atoms lie to one side of the pyrazole plane and the sulfonyl­phenyl ring to the other. The dihedral angle between the two ring planes is 70.63 (7) °. Supra­molecular arrays are formed in the crystal structure sustained by C—H⋯O and C—H⋯π(pyrazole) inter­actions and methyl-C—H⋯π(N-bound benzene) contacts.

Related literature

For background to the chemistry and biological activity of pyrazole derivatives, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]); Abdel-Aziz et al. (2009[Abdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230-237.], 2010[Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2O4S

  • Mr = 446.51

  • Triclinic, [P \overline 1]

  • a = 7.2440 (3) Å

  • b = 11.0798 (5) Å

  • c = 14.8247 (5) Å

  • α = 68.818 (4)°

  • β = 87.773 (3)°

  • γ = 81.241 (4)°

  • V = 1096.36 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.60 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.566, Tmax = 0.740

  • 7378 measured reflections

  • 4304 independent reflections

  • 4106 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 0.85

  • 4304 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C4–C6 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.45 3.2392 (19) 140
C16—H16⋯O2ii 0.95 2.49 3.3928 (18) 158
C17—H17⋯O1iii 0.95 2.50 3.3895 (18) 157
C18—H18⋯O2iii 0.95 2.58 3.4031 (17) 145
C23—H23⋯O4iv 0.95 2.59 3.3155 (18) 133
C15—H15⋯Cg1i 0.95 2.80 3.6781 (15) 154
C25—H25c⋯Cg2v 0.98 2.64 3.5649 (16) 157
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our previous work evaluating the biological potential of pyrazole derivatives (Abdel-Wahab et al., 2009; Abdel-Aziz et al., 2009; Abdel-Aziz et al., 2010) lead to the characterization of the title compound, (I).

The molecular structure of (I), Fig. 1, features a tetra-substituted pyrazole ring. The ester group is twisted out of the plane through the five-membered ring (r.m.s. deviation = 0.007 Å) as seen in the value of the O3—C3—C4—N1 torsion angle of -29.04 (11) °. The ring-connected benzene rings, (C13–C18) and (19–C24), form dihedral angles of 72.01 (7) and 48.10 (7) °, respectively, with the pyrazole ring also indicating significant twists; the dihedral angle between the two ring-bound benzene rings is 71.93 (7) °. With respect to the least-squares plane through the pyrazole ring, the sulfonyl-O atoms lie to one side, and the benzene ring to the other; the dihedral angle between the pyrazole and sulfonyl-benzene rings is 70.63 (7) °, indicating an almost orthogonal relationship.

The crystal structure features supramolecular arrays in the ac plane sustained by C—H···O and C—H···π interactions [involving the pyrazole ring as the acceptor], Fig. 2 and Table 1. Layers are connected along the b direction by C—H···.π interactions involving methyl-H and the N-bound benzene ring, Fig. 3 and Table 1.

Related literature top

For background to the chemistry and biological activity of pyrazole derivatives, see: Abdel-Wahab et al. (2009); Abdel-Aziz et al. (2009, 2010).

Experimental top

1-Phenyl-2-(phenylsulfonyl)ethanone (0.26 g, 1 mmol) was added to a stirred ethanolic sodium ethoxide solution [prepared from sodium metal (0.023 g, 1 mmol) and 25 ml of absolute ethanol]. After stirring for 20 min, ethyl 2-chloro-2-(2-p-tolylhydrazono)acetate (0.241 g, 1 mmol) was added and the reaction mixture was left to stir at room temperature for 12 h. Cold water (50 ml) was then added. The solid product was collected by filtration, washed with water and dried. Recrystallization from ethanol afforded the title pyrazole. The yellow blocks were isolated from its ethanol solution by slow evaporation at room temperature

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Our previous work evaluating the biological potential of pyrazole derivatives (Abdel-Wahab et al., 2009; Abdel-Aziz et al., 2009; Abdel-Aziz et al., 2010) lead to the characterization of the title compound, (I).

The molecular structure of (I), Fig. 1, features a tetra-substituted pyrazole ring. The ester group is twisted out of the plane through the five-membered ring (r.m.s. deviation = 0.007 Å) as seen in the value of the O3—C3—C4—N1 torsion angle of -29.04 (11) °. The ring-connected benzene rings, (C13–C18) and (19–C24), form dihedral angles of 72.01 (7) and 48.10 (7) °, respectively, with the pyrazole ring also indicating significant twists; the dihedral angle between the two ring-bound benzene rings is 71.93 (7) °. With respect to the least-squares plane through the pyrazole ring, the sulfonyl-O atoms lie to one side, and the benzene ring to the other; the dihedral angle between the pyrazole and sulfonyl-benzene rings is 70.63 (7) °, indicating an almost orthogonal relationship.

The crystal structure features supramolecular arrays in the ac plane sustained by C—H···O and C—H···π interactions [involving the pyrazole ring as the acceptor], Fig. 2 and Table 1. Layers are connected along the b direction by C—H···.π interactions involving methyl-H and the N-bound benzene ring, Fig. 3 and Table 1.

For background to the chemistry and biological activity of pyrazole derivatives, see: Abdel-Wahab et al. (2009); Abdel-Aziz et al. (2009, 2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular array in the ac plane in (I) mediated by C—H···O and C—H···π interactions shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
Ethyl 1-(4-methylphenyl)-5-phenyl-4-phenylsulfonyl-1H-pyrazole-3-carboxylate top
Crystal data top
C25H22N2O4SZ = 2
Mr = 446.51F(000) = 468
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.2440 (3) ÅCell parameters from 5331 reflections
b = 11.0798 (5) Åθ = 3.2–74.1°
c = 14.8247 (5) ŵ = 1.60 mm1
α = 68.818 (4)°T = 100 K
β = 87.773 (3)°Block, yellow
γ = 81.241 (4)°0.40 × 0.30 × 0.20 mm
V = 1096.36 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4304 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4106 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 3.2°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1213
Tmin = 0.566, Tmax = 0.740l = 1815
7378 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.060P)2 + 0.8665P]
where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C25H22N2O4Sγ = 81.241 (4)°
Mr = 446.51V = 1096.36 (8) Å3
Triclinic, P1Z = 2
a = 7.2440 (3) ÅCu Kα radiation
b = 11.0798 (5) ŵ = 1.60 mm1
c = 14.8247 (5) ÅT = 100 K
α = 68.818 (4)°0.40 × 0.30 × 0.20 mm
β = 87.773 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4304 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4106 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.740Rint = 0.014
7378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.85Δρmax = 0.35 e Å3
4304 reflectionsΔρmin = 0.42 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44173 (4)0.70984 (3)0.10567 (2)0.01551 (10)
O10.24561 (13)0.75817 (9)0.09106 (7)0.0201 (2)
O20.54033 (14)0.66162 (9)0.03658 (7)0.0202 (2)
O30.08177 (14)0.59487 (10)0.38398 (9)0.0275 (2)
O40.19467 (16)0.77438 (10)0.28475 (8)0.0280 (2)
N10.40421 (15)0.44865 (11)0.36938 (8)0.0161 (2)
N20.55383 (15)0.39169 (10)0.33340 (8)0.0150 (2)
C10.2495 (2)0.66923 (19)0.37793 (12)0.0333 (4)
H1A0.34810.72380.39900.050*
H1B0.27430.57850.40230.050*
H1C0.24700.70160.30710.050*
C20.0656 (2)0.67488 (16)0.41664 (13)0.0286 (3)
H2A0.04130.76660.39350.034*
H2B0.06720.64180.48820.034*
C30.20136 (18)0.65804 (13)0.31954 (9)0.0171 (3)
C40.35304 (18)0.56389 (12)0.30001 (9)0.0156 (3)
C50.46821 (18)0.58099 (12)0.21819 (9)0.0152 (3)
C60.59874 (18)0.46782 (12)0.24248 (9)0.0148 (3)
C70.55863 (19)0.83215 (12)0.11696 (9)0.0171 (3)
C80.7518 (2)0.82100 (14)0.10621 (10)0.0225 (3)
H80.81890.74900.09270.027*
C90.8443 (2)0.91673 (15)0.11553 (12)0.0272 (3)
H90.97600.91060.10860.033*
C100.7444 (2)1.02163 (14)0.13504 (11)0.0271 (3)
H100.80831.08680.14170.033*
C110.5522 (2)1.03192 (14)0.14486 (11)0.0247 (3)
H110.48511.10450.15770.030*
C120.4571 (2)0.93691 (13)0.13606 (10)0.0206 (3)
H120.32540.94340.14290.025*
C130.76709 (18)0.42800 (12)0.19410 (9)0.0149 (3)
C140.94252 (19)0.42706 (13)0.23053 (10)0.0182 (3)
H140.95200.45300.28450.022*
C151.10313 (19)0.38814 (13)0.18770 (10)0.0207 (3)
H151.22240.38850.21200.025*
C161.0902 (2)0.34872 (13)0.10965 (10)0.0209 (3)
H161.20040.32160.08080.025*
C170.9159 (2)0.34899 (13)0.07374 (10)0.0204 (3)
H170.90710.32160.02050.025*
C180.75398 (19)0.38910 (13)0.11527 (9)0.0179 (3)
H180.63500.39000.09010.022*
C190.63396 (17)0.26085 (12)0.39171 (9)0.0155 (3)
C200.66215 (19)0.16297 (13)0.35283 (10)0.0184 (3)
H200.64000.18310.28590.022*
C210.72330 (19)0.03502 (13)0.41333 (10)0.0203 (3)
H210.74470.03210.38690.024*
C220.75393 (19)0.00307 (13)0.51205 (10)0.0185 (3)
C230.72672 (19)0.10390 (13)0.54866 (10)0.0188 (3)
H230.74900.08430.61550.023*
C240.66765 (18)0.23258 (13)0.48902 (10)0.0173 (3)
H240.65060.30050.51480.021*
C250.8151 (2)0.13619 (13)0.57784 (11)0.0236 (3)
H25A0.74370.19430.56180.035*
H25B0.79290.14400.64520.035*
H25C0.94850.16100.56940.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01730 (17)0.01487 (16)0.01383 (16)0.00005 (12)0.00058 (11)0.00538 (12)
O10.0178 (5)0.0213 (5)0.0204 (5)0.0010 (4)0.0032 (4)0.0078 (4)
O20.0245 (5)0.0202 (5)0.0160 (5)0.0000 (4)0.0020 (4)0.0081 (4)
O30.0186 (5)0.0235 (5)0.0454 (7)0.0040 (4)0.0133 (4)0.0193 (5)
O40.0408 (6)0.0168 (5)0.0235 (5)0.0020 (4)0.0076 (4)0.0071 (4)
N10.0138 (5)0.0168 (5)0.0186 (5)0.0007 (4)0.0022 (4)0.0082 (4)
N20.0137 (5)0.0147 (5)0.0161 (5)0.0000 (4)0.0019 (4)0.0059 (4)
C10.0208 (8)0.0498 (10)0.0336 (9)0.0035 (7)0.0001 (6)0.0237 (8)
C20.0190 (7)0.0290 (8)0.0450 (9)0.0018 (6)0.0104 (6)0.0237 (7)
C30.0162 (6)0.0197 (6)0.0172 (6)0.0001 (5)0.0026 (5)0.0096 (5)
C40.0145 (6)0.0162 (6)0.0174 (6)0.0017 (5)0.0006 (5)0.0079 (5)
C50.0158 (6)0.0146 (6)0.0159 (6)0.0019 (5)0.0003 (5)0.0065 (5)
C60.0153 (6)0.0156 (6)0.0151 (6)0.0035 (5)0.0003 (5)0.0068 (5)
C70.0204 (7)0.0145 (6)0.0143 (6)0.0021 (5)0.0003 (5)0.0029 (5)
C80.0215 (7)0.0195 (7)0.0240 (7)0.0006 (5)0.0022 (5)0.0062 (6)
C90.0211 (7)0.0243 (7)0.0330 (8)0.0051 (6)0.0006 (6)0.0059 (6)
C100.0314 (8)0.0199 (7)0.0294 (8)0.0087 (6)0.0025 (6)0.0059 (6)
C110.0310 (8)0.0150 (6)0.0271 (7)0.0011 (6)0.0006 (6)0.0072 (6)
C120.0212 (7)0.0172 (6)0.0208 (7)0.0002 (5)0.0005 (5)0.0050 (5)
C130.0164 (6)0.0118 (6)0.0152 (6)0.0012 (5)0.0020 (5)0.0037 (5)
C140.0192 (7)0.0178 (6)0.0193 (6)0.0036 (5)0.0011 (5)0.0083 (5)
C150.0160 (7)0.0202 (7)0.0249 (7)0.0030 (5)0.0014 (5)0.0070 (5)
C160.0209 (7)0.0169 (6)0.0223 (7)0.0007 (5)0.0075 (5)0.0055 (5)
C170.0264 (7)0.0179 (6)0.0171 (6)0.0013 (5)0.0033 (5)0.0075 (5)
C180.0195 (7)0.0173 (6)0.0173 (6)0.0020 (5)0.0006 (5)0.0068 (5)
C190.0122 (6)0.0137 (6)0.0188 (6)0.0014 (5)0.0018 (5)0.0040 (5)
C200.0184 (7)0.0191 (6)0.0183 (6)0.0026 (5)0.0015 (5)0.0077 (5)
C210.0200 (7)0.0167 (6)0.0258 (7)0.0025 (5)0.0037 (5)0.0099 (5)
C220.0134 (6)0.0166 (6)0.0233 (7)0.0025 (5)0.0029 (5)0.0046 (5)
C230.0169 (6)0.0199 (7)0.0177 (6)0.0028 (5)0.0013 (5)0.0046 (5)
C240.0165 (6)0.0168 (6)0.0192 (6)0.0022 (5)0.0020 (5)0.0073 (5)
C250.0216 (7)0.0168 (7)0.0278 (7)0.0017 (5)0.0031 (6)0.0033 (6)
Geometric parameters (Å, º) top
S1—O11.4354 (10)C11—C121.388 (2)
S1—O21.4378 (10)C11—H110.9500
S1—C51.7544 (13)C12—H120.9500
S1—C71.7624 (14)C13—C181.3947 (18)
O3—C31.3380 (17)C13—C141.3971 (19)
O3—C21.4635 (16)C14—C151.3894 (19)
O4—C31.1968 (17)C14—H140.9500
N1—C41.3274 (17)C15—C161.387 (2)
N1—N21.3592 (15)C15—H150.9500
N2—C61.3646 (17)C16—C171.389 (2)
N2—C191.4362 (16)C16—H160.9500
C1—C21.489 (2)C17—C181.3909 (19)
C1—H1A0.9800C17—H170.9500
C1—H1B0.9800C18—H180.9500
C1—H1C0.9800C19—C241.3843 (19)
C2—H2A0.9900C19—C201.3875 (18)
C2—H2B0.9900C20—C211.3897 (19)
C3—C41.4913 (17)C20—H200.9500
C4—C51.4165 (18)C21—C221.394 (2)
C5—C61.3911 (18)C21—H210.9500
C6—C131.4809 (17)C22—C231.3942 (19)
C7—C121.3891 (19)C22—C251.5054 (18)
C7—C81.394 (2)C23—C241.3893 (19)
C8—C91.387 (2)C23—H230.9500
C8—H80.9500C24—H240.9500
C9—C101.389 (2)C25—H25A0.9800
C9—H90.9500C25—H25B0.9800
C10—C111.386 (2)C25—H25C0.9800
C10—H100.9500
O1—S1—O2119.33 (6)C12—C11—H11119.8
O1—S1—C5106.92 (6)C10—C11—H11119.8
O2—S1—C5106.93 (6)C11—C12—C7118.58 (13)
O1—S1—C7109.11 (6)C11—C12—H12120.7
O2—S1—C7107.81 (6)C7—C12—H12120.7
C5—S1—C7105.98 (6)C18—C13—C14119.85 (12)
C3—O3—C2117.09 (11)C18—C13—C6121.66 (12)
C4—N1—N2104.77 (10)C14—C13—C6118.48 (11)
N1—N2—C6113.13 (10)C15—C14—C13119.85 (12)
N1—N2—C19117.27 (10)C15—C14—H14120.1
C6—N2—C19129.49 (11)C13—C14—H14120.1
C2—C1—H1A109.5C16—C15—C14120.34 (13)
C2—C1—H1B109.5C16—C15—H15119.8
H1A—C1—H1B109.5C14—C15—H15119.8
C2—C1—H1C109.5C15—C16—C17119.82 (12)
H1A—C1—H1C109.5C15—C16—H16120.1
H1B—C1—H1C109.5C17—C16—H16120.1
O3—C2—C1109.39 (12)C16—C17—C18120.42 (13)
O3—C2—H2A109.8C16—C17—H17119.8
C1—C2—H2A109.8C18—C17—H17119.8
O3—C2—H2B109.8C17—C18—C13119.72 (13)
C1—C2—H2B109.8C17—C18—H18120.1
H2A—C2—H2B108.2C13—C18—H18120.1
O4—C3—O3125.36 (12)C24—C19—C20120.89 (12)
O4—C3—C4123.58 (13)C24—C19—N2118.50 (11)
O3—C3—C4110.98 (11)C20—C19—N2120.40 (12)
N1—C4—C5111.39 (11)C21—C20—C19119.00 (12)
N1—C4—C3118.83 (11)C21—C20—H20120.5
C5—C4—C3129.57 (12)C19—C20—H20120.5
C6—C5—C4105.42 (11)C20—C21—C22121.40 (13)
C6—C5—S1126.52 (10)C20—C21—H21119.3
C4—C5—S1127.84 (10)C22—C21—H21119.3
N2—C6—C5105.29 (11)C23—C22—C21118.19 (12)
N2—C6—C13121.29 (11)C23—C22—C25120.56 (13)
C5—C6—C13133.20 (12)C21—C22—C25121.25 (13)
C12—C7—C8121.65 (13)C24—C23—C22121.16 (13)
C12—C7—S1119.59 (11)C24—C23—H23119.4
C8—C7—S1118.76 (10)C22—C23—H23119.4
C9—C8—C7118.91 (13)C19—C24—C23119.33 (12)
C9—C8—H8120.5C19—C24—H24120.3
C7—C8—H8120.5C23—C24—H24120.3
C10—C9—C8119.93 (14)C22—C25—H25A109.5
C10—C9—H9120.0C22—C25—H25B109.5
C8—C9—H9120.0H25A—C25—H25B109.5
C9—C10—C11120.51 (14)C22—C25—H25C109.5
C9—C10—H10119.7H25A—C25—H25C109.5
C11—C10—H10119.7H25B—C25—H25C109.5
C12—C11—C10120.40 (13)
C4—N1—N2—C60.25 (14)C12—C7—C8—C90.4 (2)
C4—N1—N2—C19176.77 (11)S1—C7—C8—C9179.68 (11)
C3—O3—C2—C1110.72 (15)C7—C8—C9—C100.2 (2)
C2—O3—C3—O42.0 (2)C8—C9—C10—C110.3 (2)
C2—O3—C3—C4174.84 (12)C9—C10—C11—C120.5 (2)
N2—N1—C4—C50.83 (14)C10—C11—C12—C70.2 (2)
N2—N1—C4—C3174.42 (11)C8—C7—C12—C110.3 (2)
O4—C3—C4—N1147.76 (14)S1—C7—C12—C11179.87 (11)
O3—C3—C4—N129.15 (17)N2—C6—C13—C18109.94 (15)
O4—C3—C4—C526.5 (2)C5—C6—C13—C1876.46 (19)
O3—C3—C4—C5156.60 (13)N2—C6—C13—C1468.59 (16)
N1—C4—C5—C61.11 (15)C5—C6—C13—C14105.00 (17)
C3—C4—C5—C6173.49 (13)C18—C13—C14—C150.40 (19)
N1—C4—C5—S1173.74 (10)C6—C13—C14—C15178.96 (12)
C3—C4—C5—S111.7 (2)C13—C14—C15—C160.8 (2)
O1—S1—C5—C6145.06 (11)C14—C15—C16—C170.4 (2)
O2—S1—C5—C616.17 (13)C15—C16—C17—C180.3 (2)
C7—S1—C5—C698.65 (12)C16—C17—C18—C130.6 (2)
O1—S1—C5—C428.76 (13)C14—C13—C18—C170.31 (19)
O2—S1—C5—C4157.65 (12)C6—C13—C18—C17178.21 (12)
C7—S1—C5—C487.53 (13)N1—N2—C19—C2446.78 (16)
N1—N2—C6—C50.43 (14)C6—N2—C19—C24137.37 (14)
C19—N2—C6—C5175.56 (12)N1—N2—C19—C20127.96 (13)
N1—N2—C6—C13174.73 (11)C6—N2—C19—C2047.90 (19)
C19—N2—C6—C139.3 (2)C24—C19—C20—C210.6 (2)
C4—C5—C6—N20.88 (14)N2—C19—C20—C21173.97 (12)
S1—C5—C6—N2174.06 (10)C19—C20—C21—C221.0 (2)
C4—C5—C6—C13173.44 (13)C20—C21—C22—C231.8 (2)
S1—C5—C6—C1311.6 (2)C20—C21—C22—C25178.30 (13)
O1—S1—C7—C1216.54 (13)C21—C22—C23—C241.1 (2)
O2—S1—C7—C12147.52 (11)C25—C22—C23—C24179.04 (12)
C5—S1—C7—C1298.27 (11)C20—C19—C24—C231.4 (2)
O1—S1—C7—C8163.34 (10)N2—C19—C24—C23173.35 (11)
O2—S1—C7—C832.36 (12)C22—C23—C24—C190.5 (2)
C5—S1—C7—C881.85 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C4–C6 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.453.2392 (19)140
C16—H16···O2ii0.952.493.3928 (18)158
C17—H17···O1iii0.952.503.3895 (18)157
C18—H18···O2iii0.952.583.4031 (17)145
C23—H23···O4iv0.952.593.3155 (18)133
C15—H15···Cg1i0.952.803.6781 (15)154
C25—H25c···Cg2v0.982.643.5649 (16)157
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H22N2O4S
Mr446.51
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2440 (3), 11.0798 (5), 14.8247 (5)
α, β, γ (°)68.818 (4), 87.773 (3), 81.241 (4)
V3)1096.36 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.60
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.566, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
7378, 4304, 4106
Rint0.014
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 0.85
No. of reflections4304
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C4–C6 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.453.2392 (19)140
C16—H16···O2ii0.952.493.3928 (18)158
C17—H17···O1iii0.952.503.3895 (18)157
C18—H18···O2iii0.952.583.4031 (17)145
C23—H23···O4iv0.952.593.3155 (18)133
C15—H15···Cg1i0.952.803.6781 (15)154
C25—H25c···Cg2v0.982.643.5649 (16)157
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: hatem_741@yahoo.com.

Acknowledgements

The authors acknowledge the research center, College of Pharmacy, and Deanship of Scientific Research, King Saud University, for financial support of this project. The University of Malaya is also thanked for support of the crystallographic facility.

References

First citationAbdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230–237.  CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds