organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Bis(tri­fluoro­meth­yl)phenyl 4-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 30 June 2017; accepted 3 July 2017; online 7 July 2017)

Mol­ecules of the title compound, C15H10F6O3S, are composed of 3,5-bis­(tri­fluoro­meth­yl)phenyl substituted with a toluene-4-sulfonate group. The dihedral angle between two aromatic moieties is 45.10 (5)°. In the crystal, mol­ecules are connected by weak C—H⋯O and C—H⋯F contacts. One of the tri­fluoro­methyl groups is disordered.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition-metal-catalyzed cross-coupling reactions can be applied to aryl tosyl­ates (Ackermann et al., 2006[Ackermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619-2622.]; Zhou & Fu, 2003[Zhou, J. & Fu, G. C. (2003). J. Am. Chem. Soc. 125, 12527-12530.]). We apply 4-methyl­benzene­sulfonates to study the reaction progress and performance using first-row metal catalysts. The high natural abundance of these non-precious transition metal elements makes them an inter­esting target of study (Torborg & Beller, 2009[Torborg, C. & Beller, M. (2009). Adv. Synth. Catal. 351, 3027-3043.]).

In the asymmetric unit of the title compound, there is one independent mol­ecule. The mol­ecular structure is shown in Fig. 1[link]. In the mol­ecular structure, the bond lengths and angles are within normal ranges (Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). One of the tri­fluoro­methyl groups in the mol­ecule is disordered with occupation factors of 0.65 and 0.35. The dihedral angle between the aromatic moieties is 45.10 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal (Fig. 2[link]), there are two hydrogen bonds (Table 1[link]), both of which connect the mol­ecules into dimers. There are also two F⋯π T-shape halogen bonds to a 3,5-di(tri­fluoro­meth­yl)phenyl moiety. The distances of F5Ai and F5Bi from the centre of a plane defined by atoms C9–C13 of the 3,5-di(tri­fluoro­meth­yl)phenyl ring are 3.348 (12) and 3.256 (19) Å [symmetry code: (i) −x, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F4Ai 0.93 2.55 3.308 (3) 139
C9—H9⋯O1ii 0.93 2.40 3.2959 (17) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. Disordered fluorine atoms have been omited for clarity. Hydrogen bonds are shown as dashed lines

Synthesis and crystallization

3,5-Di(tri­fluoro­meth­yl)phenyl 4-methyl­benzene­sulfonate was synthesized according to a procedure described by Murai and co-workers (Murai et al., 2012[Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818-2821.]). The crystallization was performed in a diethyl ether solution. Diethyl ether (0.6 ml) was placed in storage reaction vials (8 ml) with silicone septa. The title compound was placed in small portions until a saturated solution was obtained. The solution was warmed, then left to stand in refrigerator (−20°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10F6O3S
Mr 384.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.2805 (3), 8.6053 (3), 12.2396 (4)
α, β, γ (°) 103.519 (3), 99.935 (3), 105.188 (3)
V3) 792.56 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.4 × 0.25 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 5437, 3070, 2614
Rint 0.013
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06
No. of reflections 3070
No. of parameters 254
No. of restraints 36
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.37
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3,5-Bis(trifluoromethyl)phenyl 4-methylbenzenesulfonate top
Crystal data top
C15H10F6O3SZ = 2
Mr = 384.29F(000) = 388
Triclinic, P1Dx = 1.610 Mg m3
a = 8.2805 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6053 (3) ÅCell parameters from 5437 reflections
c = 12.2396 (4) Åθ = 3.5–26.0°
α = 103.519 (3)°µ = 0.28 mm1
β = 99.935 (3)°T = 100 K
γ = 105.188 (3)°Irregular, colourless
V = 792.56 (5) Å30.4 × 0.25 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2614 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω–scanh = 1010
5437 measured reflectionsk = 610
3070 independent reflectionsl = 1515
Refinement top
Refinement on F236 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.1137P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3070 reflectionsΔρmax = 0.27 e Å3
254 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were found in a difference map but set to idealized positions and treated as riding with CAr—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and with Cmethyl—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.18701 (5)0.27629 (4)0.03515 (3)0.01913 (11)
O10.07383 (14)0.23781 (13)0.07602 (9)0.0260 (3)
O20.28474 (14)0.16929 (13)0.05977 (9)0.0253 (3)
O30.05670 (13)0.27937 (12)0.11983 (8)0.0194 (2)
F10.27606 (16)0.09183 (13)0.34224 (9)0.0447 (3)
F20.03104 (14)0.12166 (12)0.38253 (10)0.0457 (3)
F30.26421 (14)0.01544 (11)0.51597 (8)0.0371 (3)
F4A0.3770 (3)0.6057 (3)0.62880 (19)0.0405 (6)0.65
F5A0.1573 (14)0.6652 (12)0.5462 (8)0.0432 (17)0.65
F6A0.3974 (7)0.7323 (6)0.4990 (3)0.0254 (6)0.65
F5B0.134 (2)0.669 (2)0.5219 (14)0.0266 (17)0.35
F4B0.2762 (7)0.5775 (6)0.6351 (4)0.0582 (13)0.35
F6B0.3987 (15)0.7169 (12)0.5299 (7)0.055 (2)0.35
C10.32014 (19)0.48591 (18)0.07914 (12)0.0179 (3)
C20.48144 (19)0.53300 (19)0.15499 (13)0.0215 (3)
H20.52220.45330.18020.026*
C30.5807 (2)0.7017 (2)0.19247 (13)0.0246 (3)
H30.68940.73460.24290.030*
C40.5209 (2)0.82248 (19)0.15611 (13)0.0234 (3)
C50.3587 (2)0.77115 (19)0.07913 (14)0.0242 (3)
H50.31770.85070.05380.029*
C60.2580 (2)0.60379 (19)0.03999 (13)0.0216 (3)
H60.15030.57040.01170.026*
C70.6294 (2)1.0054 (2)0.19699 (15)0.0336 (4)
H7A0.69461.02930.14180.050*
H7B0.70711.02880.27100.050*
H7C0.55561.07470.20420.050*
C80.12143 (18)0.28625 (18)0.23573 (12)0.0172 (3)
C90.12658 (18)0.13922 (17)0.26128 (13)0.0183 (3)
H90.09250.03760.20280.022*
C100.18379 (19)0.14705 (18)0.37620 (13)0.0183 (3)
C110.23417 (19)0.29824 (18)0.46388 (13)0.0193 (3)
H110.27140.30210.54090.023*
C120.22819 (19)0.44313 (18)0.43511 (13)0.0212 (3)
C130.17096 (19)0.43894 (18)0.32017 (13)0.0196 (3)
H130.16630.53640.30100.024*
C140.1894 (2)0.01242 (19)0.40458 (14)0.0247 (3)
C150.2802 (3)0.6082 (2)0.52824 (14)0.0308 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0247 (2)0.01547 (19)0.01623 (19)0.00521 (15)0.00510 (15)0.00420 (14)
O10.0326 (6)0.0220 (6)0.0168 (5)0.0023 (5)0.0022 (5)0.0034 (4)
O20.0344 (6)0.0198 (5)0.0274 (6)0.0126 (5)0.0131 (5)0.0088 (5)
O30.0201 (5)0.0210 (5)0.0170 (5)0.0058 (4)0.0030 (4)0.0070 (4)
F10.0808 (9)0.0347 (6)0.0450 (7)0.0411 (6)0.0343 (6)0.0212 (5)
F20.0434 (6)0.0265 (5)0.0610 (8)0.0035 (5)0.0023 (5)0.0253 (5)
F30.0649 (7)0.0238 (5)0.0235 (5)0.0183 (5)0.0016 (5)0.0105 (4)
F4A0.0712 (15)0.0204 (9)0.0191 (9)0.0125 (11)0.0070 (11)0.0012 (7)
F5A0.038 (3)0.027 (2)0.056 (4)0.0084 (15)0.022 (3)0.008 (2)
F6A0.0257 (11)0.0137 (9)0.0306 (14)0.0016 (8)0.0007 (11)0.0049 (10)
F5B0.034 (4)0.011 (2)0.039 (4)0.012 (2)0.017 (3)0.006 (3)
F4B0.116 (4)0.033 (2)0.0211 (18)0.039 (3)0.005 (3)0.0005 (15)
F6B0.032 (3)0.037 (4)0.070 (5)0.004 (3)0.009 (4)0.023 (3)
C10.0217 (7)0.0169 (7)0.0149 (7)0.0049 (6)0.0063 (6)0.0042 (6)
C20.0247 (8)0.0249 (8)0.0169 (7)0.0095 (7)0.0054 (6)0.0077 (6)
C30.0227 (8)0.0302 (8)0.0152 (7)0.0036 (7)0.0027 (6)0.0027 (6)
C40.0279 (8)0.0203 (8)0.0187 (8)0.0031 (7)0.0113 (6)0.0007 (6)
C50.0280 (8)0.0200 (8)0.0286 (9)0.0102 (7)0.0108 (7)0.0092 (7)
C60.0213 (8)0.0217 (8)0.0221 (8)0.0070 (6)0.0043 (6)0.0076 (6)
C70.0381 (10)0.0219 (8)0.0314 (10)0.0005 (7)0.0106 (8)0.0008 (7)
C80.0147 (7)0.0199 (7)0.0176 (7)0.0048 (6)0.0047 (6)0.0066 (6)
C90.0188 (7)0.0140 (7)0.0195 (7)0.0026 (6)0.0050 (6)0.0028 (6)
C100.0193 (7)0.0162 (7)0.0213 (8)0.0059 (6)0.0074 (6)0.0071 (6)
C110.0225 (8)0.0195 (7)0.0166 (7)0.0081 (6)0.0050 (6)0.0051 (6)
C120.0248 (8)0.0177 (7)0.0213 (8)0.0088 (6)0.0056 (6)0.0039 (6)
C130.0220 (7)0.0153 (7)0.0235 (8)0.0072 (6)0.0058 (6)0.0075 (6)
C140.0346 (9)0.0183 (7)0.0221 (8)0.0086 (7)0.0076 (7)0.0072 (6)
C150.0468 (11)0.0209 (9)0.0233 (9)0.0151 (9)0.0010 (8)0.0042 (7)
Geometric parameters (Å, º) top
S1—O11.4234 (11)C4—C51.395 (2)
S1—O21.4246 (11)C4—C71.507 (2)
S1—O31.6208 (11)C5—C61.382 (2)
S1—C11.7488 (15)C5—H50.9300
O3—C81.4089 (17)C6—H60.9300
F1—C141.3293 (19)C7—H7A0.9600
F2—C141.3374 (19)C7—H7B0.9600
F3—C141.3334 (18)C7—H7C0.9600
F4A—C151.356 (3)C8—C131.378 (2)
F5A—C151.270 (11)C8—C91.382 (2)
F6A—C151.402 (5)C9—C101.384 (2)
F5B—C151.432 (19)C9—H90.9300
F4B—C151.398 (5)C10—C111.388 (2)
F6B—C151.158 (10)C10—C141.502 (2)
C1—C21.387 (2)C11—C121.383 (2)
C1—C61.393 (2)C11—H110.9300
C2—C31.388 (2)C12—C131.394 (2)
C2—H20.9300C12—C151.502 (2)
C3—C41.391 (2)C13—H130.9300
C3—H30.9300
O1—S1—O2121.19 (7)C8—C9—C10118.28 (13)
O1—S1—O3102.31 (6)C8—C9—H9120.9
O2—S1—O3108.14 (6)C10—C9—H9120.9
O1—S1—C1110.29 (7)C9—C10—C11121.09 (13)
O2—S1—C1110.36 (7)C9—C10—C14118.55 (13)
O3—S1—C1102.61 (6)C11—C10—C14120.37 (13)
C8—O3—S1117.42 (9)C12—C11—C10119.08 (14)
C2—C1—C6121.31 (14)C12—C11—H11120.5
C2—C1—S1119.98 (12)C10—C11—H11120.5
C6—C1—S1118.66 (11)C11—C12—C13121.06 (14)
C1—C2—C3118.59 (14)C11—C12—C15120.26 (14)
C1—C2—H2120.7C13—C12—C15118.67 (13)
C3—C2—H2120.7C8—C13—C12118.07 (13)
C2—C3—C4121.34 (14)C8—C13—H13121.0
C2—C3—H3119.3C12—C13—H13121.0
C4—C3—H3119.3F1—C14—F3107.05 (13)
C3—C4—C5118.76 (14)F1—C14—F2106.36 (13)
C3—C4—C7121.10 (15)F3—C14—F2106.91 (12)
C5—C4—C7120.14 (15)F1—C14—C10111.94 (13)
C6—C5—C4120.95 (15)F3—C14—C10112.39 (13)
C6—C5—H5119.5F2—C14—C10111.81 (13)
C4—C5—H5119.5F5A—C15—F4A111.0 (4)
C5—C6—C1119.04 (14)F6B—C15—F4B114.9 (5)
C5—C6—H6120.5F5A—C15—F6A106.2 (5)
C1—C6—H6120.5F4A—C15—F6A101.2 (2)
C4—C7—H7A109.5F6B—C15—F5B107.7 (8)
C4—C7—H7B109.5F4B—C15—F5B94.9 (7)
H7A—C7—H7B109.5F6B—C15—C12119.4 (5)
C4—C7—H7C109.5F5A—C15—C12115.2 (5)
H7A—C7—H7C109.5F4A—C15—C12112.22 (16)
H7B—C7—H7C109.5F4B—C15—C12109.2 (2)
C13—C8—C9122.41 (13)F6A—C15—C12109.9 (2)
C13—C8—O3118.51 (12)F5B—C15—C12107.7 (7)
C9—C8—O3119.03 (12)
O1—S1—O3—C8169.55 (10)C14—C10—C11—C12179.80 (14)
O2—S1—O3—C840.56 (11)C10—C11—C12—C130.7 (2)
C1—S1—O3—C876.08 (11)C10—C11—C12—C15179.37 (15)
O1—S1—C1—C2152.88 (12)C9—C8—C13—C120.1 (2)
O2—S1—C1—C216.32 (15)O3—C8—C13—C12177.43 (12)
O3—S1—C1—C298.72 (13)C11—C12—C13—C80.4 (2)
O1—S1—C1—C629.51 (14)C15—C12—C13—C8179.14 (15)
O2—S1—C1—C6166.07 (11)C9—C10—C14—F152.61 (19)
O3—S1—C1—C678.89 (12)C11—C10—C14—F1127.77 (16)
C6—C1—C2—C30.5 (2)C9—C10—C14—F3173.13 (13)
S1—C1—C2—C3177.05 (11)C11—C10—C14—F37.2 (2)
C1—C2—C3—C40.4 (2)C9—C10—C14—F266.61 (18)
C2—C3—C4—C50.9 (2)C11—C10—C14—F2113.01 (16)
C2—C3—C4—C7179.91 (14)C11—C12—C15—F6B116.5 (6)
C3—C4—C5—C60.5 (2)C13—C12—C15—F6B64.8 (6)
C7—C4—C5—C6179.48 (14)C11—C12—C15—F5A109.7 (5)
C4—C5—C6—C10.4 (2)C13—C12—C15—F5A69.1 (5)
C2—C1—C6—C50.9 (2)C11—C12—C15—F4A18.7 (3)
S1—C1—C6—C5176.65 (12)C13—C12—C15—F4A162.53 (17)
S1—O3—C8—C13101.10 (13)C11—C12—C15—F4B18.6 (3)
S1—O3—C8—C981.44 (14)C13—C12—C15—F4B160.1 (3)
C13—C8—C9—C100.0 (2)C11—C12—C15—F6A130.5 (3)
O3—C8—C9—C10177.35 (12)C13—C12—C15—F6A50.8 (3)
C8—C9—C10—C110.3 (2)C11—C12—C15—F5B120.5 (7)
C8—C9—C10—C14179.88 (13)C13—C12—C15—F5B58.2 (7)
C9—C10—C11—C120.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F4Ai0.932.553.308 (3)139
C9—H9···O1ii0.932.403.2959 (17)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
 

Funding information

Funding for this research was provided by: Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).

References

First citationAckermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619–2622.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorborg, C. & Beller, M. (2009). Adv. Synth. Catal. 351, 3027–3043.  Web of Science CrossRef CAS Google Scholar
First citationZhou, J. & Fu, G. C. (2003). J. Am. Chem. Soc. 125, 12527–12530.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds