metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­[bis­(tetra­hydro­thio­phene-κS)silver(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
*Correspondence e-mail: liebing@inorg.chem.ethz.ch

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 June 2017; accepted 19 June 2017; online 27 June 2017)

The title compound, [Ag2Cl2(C4H8S2)4] or [Ag2(μ-Cl)2(THT)4] (THT = tetra­hydro­thio­phene), is readily available by reaction of AgCl with THT. In this markedly labile complex, the Ag atoms are coordinated in a distorted tedrahedral fashion by two μ-bridging chloride ligands and each two terminal THT ligands. The structure is therefore more similar to that of THT-complexed CuCl than to that of THT-complexed AuCl, and resembles those of other [Ag2(μ-Cl)2L4]-type complexes. The mol­ecule is located on a crystallographic center of inversion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound (Fig. 1[link]), two equivalents of AgCl build a centrosymmetric planar Ag2Cl2 ring with μ-bridging chloride ligands. The Ag—Cl distances are significantly different at 2.558 (2) and 2.748 (2) Å. Therefore the complex is structurally closely related to a series of other [Ag2(μ-Cl)2L4]-type complexes, e.g. with L = PPh3 [Ag—Cl = 2.596 (2) and 2.741 (2) Å; Cassel, 1979[Cassel, A. (1979). Acta Cryst. B35, 174-177.]] and L = AsPh3 [Ag—Cl = 2.568 (2) and 2.670 (2) Å; Bowmaker et al., 1997[Bowmaker, G. A., Effendy, Kildea, J. D., de Silva, E. N. & White, A. H. (1997). Aust. J. Chem. 50, 627-640.]].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound in the crystal. Displacement ellipsoids of the non-H atoms are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary size. [Symmetry code: (') 1 − x, 1 − y, −z.]

Probably as a result of the low bulkiness of the THT ligands, the Ag2Cl2 core in the title compound is stretched along the Cl—Cl vector [Cl—Ag—Cl = 100.65 (5)°] while it is slightly stretched along the Ag—Ag vector in the PPh3 complex [Cl—Ag—Cl = 88.03 (6)°]. The shape of the M2Cl2 ring in the title compound is therefore similar to those in the polymeric copper(I) complexes [Cu2(μ-Cl)2(μ-THT)(THT)2], [Cu2(μ-Cl)2(μ-THT)2] and [Cu3(μ-Cl)3(μ-THT)2] [Cl—Cu—Cl = 96.8 (1)–105.9 (1)°; Maelger et al., 1992[Maelger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276-1280.]; Solari et al., 1996[Solari, E., De Angelis, S., Latronico, M., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). J. Clust Sci. 7, 553-566.]]. The related gold(I) complex [AuCl(THT)] features a linearly coordinated metal atom and bears no structural resemblance to the title compound (Ahrland et al., 1993[Ahrland, S., Dreisch, K., Norén, B. & Oskarsson, Å. (1993). Mater. Chem. Phys. 35, 281-289.]).

With each two terminal THT ligands, a distorted-tetra­hedral coordination of the Ag atoms is realised [Ag—S = 2.623 (2) and 2.554 (2) Å; Cl—Ag—S = 98.94 (7)–123.95 (7)°], where the deformation is stronger than in the related PPh3 complex [Cl—Ag—P = 103.59 (7)–113.92 (7)°; Cassel, 1979[Cassel, A. (1979). Acta Cryst. B35, 174-177.]]. The angle between the Ag—S bond and the S/C1/C4 plane of the THT ligand is 104.7° for S1 and 107.5° for S2. This tilting of the THT ligands corresponds to a pure sp3-hybridization of the ligating S atoms. Examples for other chlorido­silver(I) complexes with sulfur ligands are [AgCl(detu)3] [detu = N,N′-di­ethyl­thio­urea; Ag—S = 2.554 (1)–2.593 (1) Å; Bowmaker et al., 2010[Bowmaker, G. A., Pakawatchai, C., Saithong, S., Skelton, B. W. & White, A. H. (2010). Dalton Trans. 39, 4391-4404.]] and [AgCl(9S3)] [9S3 = 1,4,7-tri­thia­cyclo­nonane; Ag—S = 2.598 (1)–2.618 (1) Å; Blower et al., 1989[Blower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E., Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). Inorg. Chem. 28, 4040-4046.]], where similar Ag—S distances were observed.

In the title compound, the closest inter­molecular contact is Cl⋯C4(−x, 1 − y, −z) at 3.627 (9) Å, but the CH2 group is not in a proper orientation for a potential C—H⋯Cl bonding inter­action (C4—H4A⋯Cl = 114°, C4—H4B⋯Cl = 81°).

Synthesis and crystallization

A suspension of 0.72 g (5 mmol) of powdered silver(I) chloride in 5 ml of THT was refluxed for three h and then filtered. The resulting clear solution was layered with 10 ml of n-hexane at r.t. and then stored at −18°C. Colorless needle-like crystals were formed within a few days. When isolated from the mother liquor, these slowly decompose under THT loss even at −70°C, and readily above 0°C or when treated with organic solvents. The reaction scheme is shown in Fig. 2[link].

[Figure 2]
Figure 2
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Ag2Cl2(C4H8S2)4]
Mr 639.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 6.1921 (8), 9.9443 (13), 10.3761 (12)
α, β, γ (°) 114.710 (9), 102.121 (10), 92.239 (11)
V3) 561.66 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.35
Crystal size (mm) 0.50 × 0.05 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.398, 0.910
No. of measured, independent and observed [I > 2σ(I)] reflections 3765, 1954, 1314
Rint 0.094
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 0.88
No. of reflections 1954
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −1.53
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altamore et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-chlorido-bis[bis(tetrahydrothiophene-κS)silver(I)] top
Crystal data top
[Ag2Cl2(C4H8S2)4]Z = 1
Mr = 639.29F(000) = 320
Triclinic, P1Dx = 1.890 Mg m3
a = 6.1921 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9443 (13) ÅCell parameters from 5660 reflections
c = 10.3761 (12) Åθ = 4.0–29.2°
α = 114.710 (9)°µ = 2.35 mm1
β = 102.121 (10)°T = 200 K
γ = 92.239 (11)°Needle, colorless
V = 561.66 (13) Å30.50 × 0.05 × 0.05 mm
Data collection top
Stoe IPDS 2T
diffractometer
1314 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.094
area detector scansθmax = 25.0°, θmin = 4.0°
Absorption correction: numerical
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 77
Tmin = 0.398, Tmax = 0.910k = 1111
3765 measured reflectionsl = 1212
1954 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0669P)2]
where P = (Fo2 + 2Fc2)/3
1954 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 1.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms of the THT ligands were fixed geometrically and refined using a riding model with U(H) = 1.20 Ueq(C). C—H distances were constrained to 0.99 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3137 (14)0.1602 (9)0.3354 (9)0.0357 (19)
H1B0.46410.17060.27300.043*
H1A0.28600.06360.42410.043*
C20.2946 (13)0.2885 (10)0.3764 (10)0.037 (2)
H2B0.37290.27560.45380.045*
H2A0.35990.38450.29020.045*
C30.0462 (15)0.2851 (11)0.4317 (10)0.045 (2)
H3B0.01190.19880.52870.054*
H3A0.01780.37790.44190.054*
C40.0682 (13)0.2715 (10)0.3204 (9)0.037 (2)
H4B0.22100.21620.36950.045*
H4A0.07810.37190.24550.045*
C50.1488 (14)0.1726 (10)0.1715 (10)0.039 (2)
H5B0.07650.15610.24120.047*
H5A0.03420.14890.07980.047*
C60.3284 (17)0.0802 (12)0.1422 (17)0.077 (4)
H6B0.28430.01720.14080.093*
H6A0.35010.06080.04440.093*
C70.5338 (16)0.1515 (11)0.2503 (13)0.057 (3)
H7B0.65960.11200.20770.069*
H7A0.53800.12680.33380.069*
C80.5628 (12)0.3170 (9)0.3049 (8)0.0320 (18)
H8B0.67020.34880.26100.038*
H8A0.61970.36680.41280.038*
S10.1020 (3)0.1702 (2)0.2355 (2)0.0345 (5)
S20.2882 (3)0.3662 (2)0.2509 (2)0.0306 (5)
Cl0.2644 (3)0.6363 (2)0.0082 (2)0.0339 (5)
Ag0.29919 (12)0.39288 (8)0.01788 (7)0.0394 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (4)0.030 (5)0.035 (4)0.012 (4)0.007 (4)0.009 (4)
C20.032 (4)0.050 (6)0.039 (5)0.005 (4)0.014 (4)0.026 (4)
C30.050 (5)0.057 (6)0.035 (5)0.020 (5)0.009 (4)0.026 (5)
C40.027 (4)0.047 (5)0.034 (5)0.013 (4)0.002 (4)0.016 (4)
C50.034 (4)0.042 (5)0.047 (5)0.001 (4)0.005 (4)0.029 (4)
C60.051 (7)0.032 (6)0.122 (11)0.009 (5)0.007 (7)0.014 (7)
C70.047 (6)0.042 (6)0.082 (8)0.027 (5)0.006 (5)0.028 (6)
C80.028 (4)0.038 (5)0.027 (4)0.002 (4)0.004 (3)0.016 (4)
S10.0374 (11)0.0337 (12)0.0384 (12)0.0066 (9)0.0128 (9)0.0197 (10)
S20.0335 (11)0.0329 (11)0.0301 (10)0.0121 (9)0.0089 (8)0.0170 (9)
Cl0.0343 (10)0.0353 (11)0.0410 (11)0.0134 (9)0.0130 (9)0.0227 (10)
Ag0.0508 (4)0.0415 (4)0.0340 (4)0.0131 (3)0.0097 (3)0.0240 (3)
Geometric parameters (Å, º) top
C1—C21.506 (11)C7—C81.489 (12)
C1—S11.816 (9)C8—S21.827 (7)
C2—C31.518 (12)S1—Ag2.623 (2)
C3—C41.524 (12)S2—Ag2.5541 (19)
C4—S11.826 (7)Cl—Ag2.5581 (19)
C5—C61.470 (14)Cl—Agi2.748 (2)
C5—S21.837 (9)Ag—Cli2.748 (2)
C6—C71.430 (15)
C2—C1—S1105.2 (5)C8—S2—C593.4 (4)
C1—C2—C3105.4 (7)C8—S2—Ag103.5 (3)
C2—C3—C4107.4 (6)C5—S2—Ag100.4 (3)
C3—C4—S1106.6 (5)Ag—Cl—Agi79.35 (5)
C6—C5—S2104.7 (7)S2—Ag—Cl123.95 (7)
C7—C6—C5111.7 (10)S2—Ag—S1118.30 (7)
C6—C7—C8112.4 (7)Cl—Ag—S1107.93 (7)
C7—C8—S2106.7 (6)S2—Ag—Cli101.61 (6)
C1—S1—C493.7 (4)Cl—Ag—Cli100.65 (5)
C1—S1—Ag100.2 (3)S1—Ag—Cli98.94 (7)
C4—S1—Ag99.8 (3)
S1—C1—C2—C344.4 (8)C2—C1—S1—Ag76.7 (6)
C1—C2—C3—C448.3 (9)C3—C4—S1—C13.1 (7)
C2—C3—C4—S129.5 (9)C3—C4—S1—Ag104.1 (6)
S2—C5—C6—C734.5 (12)C7—C8—S2—C53.3 (7)
C5—C6—C7—C834.4 (15)C7—C8—S2—Ag98.2 (6)
C6—C7—C8—S216.3 (12)C6—C5—S2—C820.9 (8)
C2—C1—S1—C423.9 (6)C6—C5—S2—Ag83.5 (8)
Symmetry code: (i) x+1, y+1, z.
 

References

First citationAhrland, S., Dreisch, K., Norén, B. & Oskarsson, Å. (1993). Mater. Chem. Phys. 35, 281–289.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E., Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). Inorg. Chem. 28, 4040–4046.  CSD CrossRef CAS Google Scholar
First citationBowmaker, G. A., Effendy, Kildea, J. D., de Silva, E. N. & White, A. H. (1997). Aust. J. Chem. 50, 627–640.  CSD CrossRef CAS Google Scholar
First citationBowmaker, G. A., Pakawatchai, C., Saithong, S., Skelton, B. W. & White, A. H. (2010). Dalton Trans. 39, 4391–4404.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCassel, A. (1979). Acta Cryst. B35, 174–177.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMaelger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276–1280.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolari, E., De Angelis, S., Latronico, M., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). J. Clust Sci. 7, 553–566.  CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds