organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4,9,12-Tetra­meth­­oxy-14-octyl-5,8-di­hydro­diindolo[3,2-b;2′,3′-h]carbazole with an unknown solvent

CROSSMARK_Color_square_no_text.svg

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and bLaboratoire de Chimie Moléculaire et Thio-organique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 22 March 2017; accepted 23 March 2017; online 28 March 2017)

The title compound, 2C36H39N3O4·H2O, is a linear π-conjugated ladder oligomer with an alkyl chain on the central nitro­gen atom. This diindolocarbazole, prepared via a twofold Cadogan reaction, adopts a sligthly convex shape, anti to the disordered octyl group. The unit cell contains nine mol­ecules of the title compound and half a water mol­ecule per main mol­ecule. The water mol­ecule forms hydrogen bridges, connecting the carbazole-NH and meth­oxy groups of different mol­ecules. The crystal contains solvent mol­ecules which are located in a channel parallel to the c axis. It was not possible to determine the position and nature of the solvent (a mixure of choroform, n-pentane and DMSO). The SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] option of PLATON was used to model the missing electron density. The given chemical formula and other crystal data do not take into account these solvent mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indolocarbazoles are currently investigated as materials for optical (Nemkovich et al., 2009[Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.]) and electronic applications (Wakim et al., 2004[Wakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386-4388.]; Zheng et al., 2015[Zheng, Y.-Q., Potscavage, W. J. Jr, Zhang, J.-H., Wei, B. & Huang, R.-J. (2015). Chin. Phys. B24, 0278011-027801/4]). Among the different synthetic routes (Vlasselaer & Dehaen, 2016[Vlasselaer, M. & Dehaen, W. (2016). Molecules, 21, 7851-785.]), the twofold Cadogan reaction (Cadogan et al., 1965[Cadogan, J. I. G., Cameron-Wood, M., Mackie, R. K. & Searle, R. J. G. (1965). J. Chem. Soc. pp. 4831-4837.]) is a very successful route to indolocarbazoles (Kistenmacher & Müllen, 1992[Kistenmacher, A. & Müllen, K. (1992). J. Heterocycl. Chem. 29, 1237-1239.]; Wrobel et al., 2013[Wrobel, N., Witulski, B., Schollmeyer, D. & Detert, H. (2013). Acta Cryst. E69, o255.]) and is also suitable for the preparation of higher oligomers (Srour et al., 2016[Srour, H., Doan, T.-H., Silva, E. D., Whitby, R. J. & Witulski, B. (2016). J. Mater. Chem. C. 4, 6270-6279.]). In a continuation of our studies on indolo-annulated heterocycles (Dassonneville et al., 2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]; Nissen & Detert, 2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2853.]; Letessier & Detert, 2013[Letessier, J. & Detert, H. (2013). Synthesis, 44, 290-296.]), we present here the first X-ray structure of a linear diindolocarbazole (Fig. 1[link]).

[Figure 1]
Figure 1
The crystal structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. Only the major occupancy sites of the disordered atoms are shown.

The unit cell contains nine mol­ecules of the title compound and half a water mol­ecule per title mol­ecule. The water forms hydrogen bridges, connecting the carbazole-NH and meth­oxy groups of three mol­ecules (Table 1[link], Fig. 2[link]). The π-conjugated segment is slightly convex, with the alkyl chain on top. Two nearly planar carbazole units [maximum deviations of 0.074 (4) Å for C9 from the mean plane through N11/C2–C10/C12–C14 and 0.017 (3) Å for C27 of the mean plane through N18/C15–C17/C19–C27) enclose an angle of 8.17 (7)°, anti to the alkyl chain. Two modes of disorder are present in the octyl chain: the terminal methyl group adopts an anti and a gauche conformation (occupancy ratio 0.70:0.30), with torsion angles of 172.8 (6)° (anti, C312—C33—C34—C35) and −60.1 (12)° (gauche, C35A—C34—C33–C32). Similarly, the disorder at C29 (0.85:0.15 occupancy ratio anti/gauche) is characterized by torsion angles of −176.3 (3)° for C28—C28—C29—C31 and −121.9 (13)° for C28—C29A—C30—C23.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O1W 0.88 2.03 2.879 (5) 162
N11—H11⋯O1Wi 0.88 2.45 3.238 (6) 149
N18—H18⋯O36i 1.09 2.03 3.068 (3) 157
O1W—H1W⋯N11 0.84 2.43 2.879 (5) 114
O1W—H1W⋯O38 0.84 2.41 2.900 (6) 118
O1W—H2W⋯O38i 0.75 2.48 3.181 (6) 158
Symmetry code: (i) x-y, x, -z.
[Figure 2]
Figure 2
A partial packing diagram, showing the hydrogen-bonding network. View along the c axis. Most of the H atoms omitted for clarity. Symmetry-equivalent mol­ecules are drawn with different colours.

Synthesis and crystallization

200 mg of 9-octyl-2,7-bis­(2,5-di­meth­oxy­phen­yl)-3,6-di­nitro-9-H-carbazole was mixed with triethyl phosphite (4 ml) and heated for 30 min in a microwave oven (483 K, 300 W). The mixture was dissolved in ethyl acetate, hydro­chloric acid (6 M, 30 ml) was added and stirred at 353 K for 3 h. The product was isolated by extraction with di­chloro­methane from an aqueous solution followed by column chromatography (SiO2, petroleum ether:ethyl acetate 5:1). Yield 37 mg (20%), m.p. 392 K. Single crystals were obtained from a solution in DMSO and chloro­form.

1H NMR: (400 MHz, DMSO-δ6): d = 11.16 (s, 2 H, N—H), 8.10 (s, 2 H. 6-H, 7-H), 6.89 (d, J = 8.5 Hz, 2 H, 3-H, 10-H), 6.55 (d, J = 8.7 Hz, 2 H, 2-H, 11-H), 4.45 (t, J = 6.9 Hz, 2 H, OCH2), 4.03 (s, 6 H, 1-OCH3, 12-OCH3), 3.95 (s, 6 H, 4-OCH3, 9-OCH3), 1.91 (m, 2 H), 1.39–1.22 (m, 10 H), 0.78 (t, J = 7 Hz, 3 H, CH3). 1C NMR: (400 MHz, DMSO-δ6): d = 149.9 (C-1, C-12), 139.9 (C-4, C-9), 136.9 (C-13a, C-14a), 133.9 (C-5a, C-7a), 131.8 (C-4a, C-8a), 121.9 (C-15a, C-12b), 121.5 (C-6a, C-6 b), 112.7 (C12a, C15b), 106.4 (C-3, C-10), 100.7 (C-6, C-7), 97.9 (C-2, C-11), 55.7 (4-OCH3, 9-OCH3), 55.5 (1-OCH3, 12-OCH3), 42.4 (OCH2), 31.2, 28.6 (2 C), 27.8, 26.5, 22.0, 13.9 (CH3); IR (ATR): 3424, 3064, 2992, 2925, 2850, 1624, 1597, 1515, 1460, 1420, 1378, 1346, 1305, 1280, 1252, 1223, 1161, 1108, 1089, 1016, 970, 844 cm−1; MS: (FD): 578 (M.+*), HR–ESI: 578.3019, calculated for C36H40N3O4+: 578.3011

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two modes of disorder are present in the octyl chain: the terminal methyl group (occupancy ratio 0.70:0.30) and atom C29 (occupancy ratio 0.85:0.15). The s.o.f. for the disordered carbon atoms were kept fixed, while the anisotropic thermal parameters were refined using the ISOR instruction. The water mol­ecule was refined with an s.o.f of 0.5. The crystal contains solvent mol­ecules which are located in a channel parallel to the c axis. It was not possible to determine the position and nature of the solvent (mixure of choroform, n-pentan and DMSO). The SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) option of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used to model the missing electron density.

Table 2
Experimental details

Crystal data
Chemical formula 2C36H39N3O4·H2O
Mr 1173.42
Crystal system, space group Trigonal, R[\overline{3}]:H
Temperature (K) 193
a, c (Å) 26.3932 (5), 24.8270 (5)
V3) 14977.5 (6)
Z 9
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.27 × 0.17 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII
No. of measured, independent and observed [I > 2σ(I)] reflections 131773, 7932, 2895
Rint 0.145
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.222, 0.85
No. of reflections 7932
No. of parameters 429
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.24
Computer programs: SMART, APEX2 and SAINT (Bruker, 1997[Bruker (1997). SMART, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART and SAINT (Bruker, 1997); cell refinement: SMART and SAINT (Bruker, 1997); data reduction: SMART and SAINT (Bruker, 1997); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-b;2',3'-h]carbazole top
Crystal data top
2C36H39N3O4·H2ODx = 1.171 Mg m3
Mr = 1173.42Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:HCell parameters from 8684 reflections
a = 26.3932 (5) Åθ = 2.4–19.1°
c = 24.8270 (5) ŵ = 0.08 mm1
V = 14977.5 (6) Å3T = 193 K
Z = 9Block, colourless
F(000) = 56340.27 × 0.17 × 0.14 mm
Data collection top
Bruker SMART APEXII
diffractometer
Rint = 0.145
Radiation source: sealed tubeθmax = 27.9°, θmin = 1.5°
CCD scanh = 3334
131773 measured reflectionsk = 3433
7932 independent reflectionsl = 3232
2895 reflections with I > 2σ(I)
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.222 w = 1/[σ2(Fo2) + (0.1266P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
7932 reflectionsΔρmax = 0.39 e Å3
429 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.39718 (9)0.15387 (9)0.05021 (9)0.0616 (6)
C20.33803 (11)0.11326 (11)0.05643 (10)0.0569 (7)
C30.31146 (11)0.06711 (11)0.09279 (10)0.0577 (7)
H30.3337860.0583090.1171130.069*
C40.25060 (11)0.03444 (11)0.09185 (10)0.0568 (7)
C50.20813 (12)0.01553 (12)0.12255 (11)0.0663 (7)
C60.21232 (14)0.04878 (13)0.16476 (12)0.0738 (8)
C70.16204 (16)0.09611 (16)0.18386 (14)0.1020 (11)
H70.1641660.1175960.2136250.122*
C80.10804 (16)0.11305 (17)0.16021 (14)0.1040 (12)
H80.0742180.1468310.1733610.125*
C90.10238 (14)0.08218 (15)0.11835 (13)0.0875 (10)
C100.15277 (13)0.03232 (13)0.10074 (11)0.0696 (8)
N110.15846 (9)0.00550 (10)0.05968 (9)0.0687 (6)
H110.1296790.0037420.0403370.082*
C120.21804 (11)0.04723 (11)0.05408 (10)0.0590 (7)
C130.24413 (12)0.09410 (11)0.01950 (10)0.0591 (7)
H130.2217480.1029970.0046540.071*
C140.30485 (11)0.12791 (11)0.02150 (9)0.0554 (7)
C150.34586 (11)0.18072 (11)0.00642 (10)0.0578 (7)
C160.33799 (12)0.21639 (11)0.04236 (10)0.0596 (7)
H160.3002190.2070860.0546550.072*
C170.38772 (13)0.26599 (11)0.05931 (10)0.0610 (7)
N180.39149 (11)0.30915 (9)0.09462 (9)0.0695 (6)
H180.3518210.2967590.1179840.083*
C190.44947 (15)0.35066 (12)0.09997 (12)0.0738 (8)
C200.47299 (18)0.40164 (13)0.13206 (14)0.0839 (10)
C210.5324 (2)0.43785 (14)0.13098 (17)0.1015 (12)
H210.5496310.4728600.1515970.122*
C220.56788 (18)0.42417 (15)0.10023 (19)0.1097 (14)
H220.6089780.4500520.1010490.132*
C230.54594 (16)0.37413 (14)0.06817 (16)0.0923 (11)
C240.48467 (14)0.33606 (12)0.06833 (13)0.0750 (9)
C250.44519 (13)0.28154 (11)0.04191 (12)0.0676 (8)
C260.45295 (12)0.24538 (12)0.00583 (12)0.0678 (8)
H260.4908080.2544110.0059310.081*
C270.40278 (12)0.19545 (11)0.01222 (11)0.0611 (7)
C280.44510 (13)0.14724 (14)0.06915 (13)0.0830 (9)
H28A0.4790140.1861800.0774410.100*0.85
H28B0.4335020.1237750.1026690.100*0.85
H28C0.4484980.1560160.1081840.100*0.15
H28D0.4806950.1792790.0522180.100*0.15
C290.46330 (18)0.11551 (18)0.0245 (2)0.0924 (13)0.85
H29A0.5017730.1203710.0345670.111*0.85
H29B0.4684010.1359420.0102680.111*0.85
C29A0.4496 (8)0.0993 (9)0.0641 (8)0.058 (5)0.15
H29C0.4919940.1128660.0644350.070*0.15
H29D0.4333410.0766310.0976530.070*0.15
C300.42270 (17)0.05359 (18)0.01624 (15)0.1057 (12)
H30A0.4196180.0327060.0502920.127*0.85
H30B0.3835810.0483710.0084510.127*0.85
H30C0.4012140.0692700.0039990.127*0.15
H30D0.3918200.0188970.0353010.127*0.15
C310.4386 (2)0.02484 (19)0.02872 (19)0.1261 (15)
H31A0.4780140.0310550.0206500.151*
H31B0.4419730.0465290.0623170.151*
C320.4015 (2)0.0360 (2)0.03997 (16)0.1324 (16)
H32A0.3961670.0575990.0059160.159*
H32B0.3626990.0418860.0503090.159*
C330.4192 (2)0.0638 (2)0.0815 (2)0.1427 (17)
H33A0.4589660.0556960.0719300.171*
H33B0.4229370.0428220.1156960.171*
C340.3843 (4)0.1264 (3)0.0933 (3)0.192 (3)
H34A0.3462150.1340990.1078490.230*0.7
H34B0.3762960.1477490.0586670.230*0.7
H34C0.3833540.1479940.0602960.230*0.3
H34D0.4051450.1357210.1212380.230*0.3
C350.4083 (5)0.1519 (4)0.1304 (3)0.202 (4)0.7
H35A0.3805540.1937830.1344720.304*0.7
H35B0.4453810.1463210.1161160.304*0.7
H35C0.4151590.1326070.1655310.304*0.7
C35A0.3246 (8)0.1491 (10)0.1112 (8)0.179 (7)0.3
H35D0.3063880.1912870.1175370.269*0.3
H35E0.3244310.1295260.1446610.269*0.3
H35F0.3025440.1418540.0834500.269*0.3
O360.26787 (9)0.03024 (9)0.18319 (8)0.0809 (6)
C370.27329 (16)0.06189 (16)0.22806 (13)0.1004 (11)
H37A0.2592340.1025420.2174250.151*
H37B0.3144290.0435900.2389120.151*
H37C0.2498930.0610550.2583310.151*
O380.05177 (9)0.09506 (10)0.09089 (9)0.0999 (7)
C390.00197 (15)0.15248 (16)0.09840 (17)0.1205 (14)
H39A0.0121990.1564430.1355070.181*
H39B0.0291620.1581380.0733850.181*
H39C0.0133210.1820060.0914250.181*
O400.43208 (12)0.40842 (9)0.15991 (9)0.1011 (8)
C410.4547 (2)0.45374 (17)0.19893 (16)0.1433 (18)
H41A0.4859080.4526070.2193400.215*
H41B0.4233500.4482650.2235610.215*
H41C0.4705140.4916790.1808410.215*
O420.57773 (10)0.35734 (9)0.03698 (13)0.1135 (9)
C430.6389 (5)0.3968 (5)0.0414 (4)0.102 (3)0.57
H43A0.6467790.4370030.0367870.153*0.57
H43B0.6595220.3879360.0134640.153*0.57
H43C0.6524980.3927240.0769880.153*0.57
C43A0.6370 (7)0.3986 (8)0.0112 (5)0.114 (5)0.43
H43D0.6683870.4051740.0363110.171*0.43
H43E0.6393920.4360130.0028520.171*0.43
H43F0.6412330.3810210.0220290.171*0.43
O1W0.0541 (2)0.0271 (2)0.0018 (2)0.1203 (16)0.5
H1W0.0709370.0462600.0048630.180*0.5
H2W0.0683370.0076600.0256370.180*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0533 (14)0.0561 (13)0.0704 (14)0.0236 (11)0.0004 (11)0.0020 (11)
C20.0586 (17)0.0549 (16)0.0546 (15)0.0264 (14)0.0025 (13)0.0037 (13)
C30.0597 (17)0.0578 (16)0.0545 (15)0.0284 (14)0.0005 (13)0.0043 (13)
C40.0626 (17)0.0525 (15)0.0518 (15)0.0262 (14)0.0066 (13)0.0023 (12)
C50.0637 (19)0.0687 (18)0.0593 (17)0.0278 (15)0.0099 (14)0.0012 (15)
C60.070 (2)0.074 (2)0.0631 (18)0.0250 (17)0.0109 (16)0.0156 (15)
C70.085 (3)0.105 (3)0.083 (2)0.023 (2)0.007 (2)0.033 (2)
C80.081 (3)0.107 (3)0.089 (2)0.021 (2)0.017 (2)0.041 (2)
C90.056 (2)0.098 (2)0.084 (2)0.0200 (18)0.0081 (17)0.011 (2)
C100.067 (2)0.0739 (19)0.0572 (17)0.0276 (17)0.0144 (15)0.0058 (15)
N110.0555 (15)0.0737 (15)0.0665 (15)0.0244 (13)0.0043 (11)0.0029 (12)
C120.0547 (16)0.0584 (16)0.0561 (16)0.0225 (14)0.0064 (13)0.0032 (13)
C130.0599 (17)0.0625 (17)0.0525 (15)0.0288 (15)0.0015 (13)0.0000 (13)
C140.0579 (17)0.0553 (16)0.0482 (14)0.0248 (14)0.0033 (13)0.0041 (12)
C150.0551 (16)0.0541 (16)0.0570 (15)0.0220 (13)0.0045 (13)0.0051 (13)
C160.0604 (17)0.0574 (16)0.0564 (15)0.0260 (14)0.0057 (13)0.0025 (13)
C170.074 (2)0.0516 (16)0.0562 (16)0.0302 (15)0.0093 (14)0.0010 (13)
N180.0786 (17)0.0510 (13)0.0654 (14)0.0222 (13)0.0132 (12)0.0035 (11)
C190.086 (2)0.0523 (18)0.076 (2)0.0290 (18)0.0213 (17)0.0022 (15)
C200.116 (3)0.0511 (19)0.077 (2)0.036 (2)0.032 (2)0.0049 (16)
C210.115 (3)0.049 (2)0.119 (3)0.025 (2)0.046 (3)0.0009 (19)
C220.092 (3)0.051 (2)0.160 (4)0.017 (2)0.041 (3)0.013 (2)
C230.080 (2)0.050 (2)0.138 (3)0.0252 (19)0.029 (2)0.004 (2)
C240.074 (2)0.0458 (17)0.091 (2)0.0194 (16)0.0242 (17)0.0043 (15)
C250.069 (2)0.0514 (17)0.0766 (19)0.0257 (15)0.0139 (16)0.0057 (15)
C260.0552 (17)0.0559 (17)0.086 (2)0.0230 (15)0.0039 (15)0.0083 (15)
C270.0595 (18)0.0532 (16)0.0657 (17)0.0246 (14)0.0030 (14)0.0061 (14)
C280.0632 (19)0.077 (2)0.099 (2)0.0273 (17)0.0086 (17)0.0136 (18)
C290.077 (3)0.080 (3)0.127 (4)0.043 (2)0.021 (3)0.024 (3)
C29A0.056 (11)0.076 (14)0.060 (11)0.047 (11)0.010 (10)0.011 (11)
C300.110 (3)0.117 (3)0.097 (3)0.062 (3)0.020 (2)0.012 (2)
C310.128 (3)0.103 (3)0.170 (4)0.074 (3)0.061 (3)0.038 (3)
C320.174 (4)0.128 (4)0.101 (3)0.080 (4)0.034 (3)0.008 (3)
C330.203 (5)0.139 (4)0.130 (4)0.118 (4)0.025 (4)0.014 (3)
C340.233 (7)0.215 (7)0.164 (5)0.139 (6)0.025 (5)0.061 (5)
C350.319 (11)0.184 (7)0.160 (7)0.167 (8)0.067 (7)0.051 (6)
C35A0.138 (12)0.225 (16)0.156 (13)0.077 (11)0.011 (11)0.022 (11)
O360.0801 (15)0.0857 (14)0.0682 (13)0.0350 (12)0.0015 (11)0.0177 (11)
C370.113 (3)0.106 (3)0.078 (2)0.052 (2)0.0006 (19)0.026 (2)
O380.0648 (14)0.0994 (17)0.1058 (17)0.0189 (13)0.0138 (13)0.0196 (13)
C390.075 (2)0.096 (3)0.150 (4)0.013 (2)0.013 (2)0.026 (3)
O400.145 (2)0.0707 (15)0.0760 (14)0.0449 (15)0.0241 (15)0.0223 (12)
C410.207 (5)0.093 (3)0.102 (3)0.055 (3)0.042 (3)0.046 (2)
O420.0677 (16)0.0602 (14)0.195 (3)0.0189 (13)0.0109 (16)0.0058 (15)
C430.069 (5)0.067 (4)0.157 (9)0.024 (4)0.006 (7)0.023 (7)
C43A0.074 (6)0.098 (8)0.127 (10)0.011 (5)0.002 (9)0.030 (8)
O1W0.109 (4)0.125 (4)0.135 (4)0.065 (3)0.005 (3)0.010 (3)
Geometric parameters (Å, º) top
N1—C21.392 (3)C29—C301.453 (5)
N1—C271.398 (3)C29—H29A0.9900
N1—C281.440 (3)C29—H29B0.9900
C2—C31.392 (3)C29A—C301.586 (19)
C2—C141.416 (3)C29A—H29C0.9900
C3—C41.393 (3)C29A—H29D0.9900
C3—H30.9500C30—C311.521 (5)
C4—C121.422 (4)C30—H30A0.9900
C4—C51.449 (4)C30—H30B0.9900
C5—C101.406 (4)C30—H30C0.9900
C5—C61.406 (4)C30—H30D0.9900
C6—O361.372 (3)C31—C321.429 (6)
C6—C71.374 (4)C31—H31A0.9900
C7—C81.393 (5)C31—H31B0.9900
C7—H70.9500C32—C331.470 (5)
C8—C91.374 (5)C32—H32A0.9900
C8—H80.9500C32—H32B0.9900
C9—O381.382 (4)C33—C341.464 (7)
C9—C101.394 (4)C33—H33A0.9900
C10—N111.381 (3)C33—H33B0.9900
N11—C121.405 (3)C34—C35A1.448 (18)
N11—H110.8800C34—C351.459 (9)
C12—C131.375 (3)C34—H34A0.9900
C13—C141.392 (3)C34—H34B0.9900
C13—H130.9500C34—H34C0.9900
C14—C151.444 (3)C34—H34D0.9900
C15—C161.386 (4)C35—H35A0.9800
C15—C271.428 (4)C35—H35B0.9800
C16—C171.377 (4)C35—H35C0.9800
C16—H160.9500C35A—H35D0.9800
C17—N181.401 (3)C35A—H35E0.9800
C17—C251.426 (4)C35A—H35F0.9800
N18—C191.372 (4)O36—C371.442 (3)
N18—H181.0943C37—H37A0.9800
C19—C241.410 (4)C37—H37B0.9800
C19—C201.412 (4)C37—H37C0.9800
C20—O401.367 (4)O38—C391.438 (4)
C20—C211.369 (5)C39—H39A0.9800
C21—C221.388 (5)C39—H39B0.9800
C21—H210.9500C39—H39C0.9800
C22—C231.396 (5)O40—C411.418 (4)
C22—H220.9500C41—H41A0.9800
C23—O421.368 (4)C41—H41B0.9800
C23—C241.414 (4)C41—H41C0.9800
C24—C251.445 (4)O42—C431.422 (12)
C25—C261.397 (4)O42—C43A1.529 (16)
C26—C271.395 (4)C43—H43A0.9800
C26—H260.9500C43—H43B0.9800
C28—C29A1.334 (18)C43—H43C0.9800
C28—C291.601 (5)C43A—H43D0.9800
C28—H28A0.9900C43A—H43E0.9800
C28—H28B0.9900C43A—H43F0.9800
C28—H28C0.9900O1W—H1W0.8406
C28—H28D0.9900O1W—H2W0.7487
C2—N1—C27108.5 (2)H29A—C29—H29B107.4
C2—N1—C28125.9 (2)C28—C29A—C30125.0 (13)
C27—N1—C28124.2 (2)C28—C29A—H29C106.1
C3—C2—N1128.8 (2)C30—C29A—H29C106.1
C3—C2—C14121.8 (2)C28—C29A—H29D106.1
N1—C2—C14109.3 (2)C30—C29A—H29D106.1
C2—C3—C4116.8 (2)H29C—C29A—H29D106.3
C2—C3—H3121.6C29—C30—C31115.6 (4)
C4—C3—H3121.6C31—C30—C29A143.0 (7)
C3—C4—C12120.7 (2)C29—C30—H30A108.4
C3—C4—C5133.1 (3)C31—C30—H30A108.4
C12—C4—C5106.2 (2)C29—C30—H30B108.4
C10—C5—C6118.9 (3)C31—C30—H30B108.4
C10—C5—C4107.1 (2)H30A—C30—H30B107.4
C6—C5—C4133.9 (3)C31—C30—H30C101.2
O36—C6—C7125.7 (3)C29A—C30—H30C101.2
O36—C6—C5115.4 (2)C31—C30—H30D101.2
C7—C6—C5118.9 (3)C29A—C30—H30D101.2
C6—C7—C8121.0 (3)H30C—C30—H30D104.5
C6—C7—H7119.5C32—C31—C30119.9 (4)
C8—C7—H7119.5C32—C31—H31A107.3
C9—C8—C7121.7 (3)C30—C31—H31A107.3
C9—C8—H8119.1C32—C31—H31B107.3
C7—C8—H8119.1C30—C31—H31B107.3
C8—C9—O38127.3 (3)H31A—C31—H31B106.9
C8—C9—C10117.5 (3)C31—C32—C33119.2 (4)
O38—C9—C10115.2 (3)C31—C32—H32A107.5
N11—C10—C9128.4 (3)C33—C32—H32A107.5
N11—C10—C5109.6 (2)C31—C32—H32B107.5
C9—C10—C5121.8 (3)C33—C32—H32B107.5
C10—N11—C12108.3 (2)H32A—C32—H32B107.0
C10—N11—H11125.8C34—C33—C32121.7 (5)
C12—N11—H11125.8C34—C33—H33A106.9
C13—C12—N11128.9 (3)C32—C33—H33A106.9
C13—C12—C4122.3 (2)C34—C33—H33B106.9
N11—C12—C4108.7 (2)C32—C33—H33B106.9
C12—C13—C14116.9 (2)H33A—C33—H33B106.7
C12—C13—H13121.5C35A—C34—C33117.9 (11)
C14—C13—H13121.5C35—C34—C33118.2 (7)
C13—C14—C2121.2 (2)C35—C34—H34A107.7
C13—C14—C15132.0 (2)C33—C34—H34A107.7
C2—C14—C15106.9 (2)C35—C34—H34B107.7
C16—C15—C27121.2 (2)C33—C34—H34B107.8
C16—C15—C14132.1 (2)H34A—C34—H34B107.1
C27—C15—C14106.6 (2)C35A—C34—H34C107.8
C17—C16—C15116.6 (3)C33—C34—H34C107.8
C17—C16—H16121.7C35A—C34—H34D107.8
C15—C16—H16121.7C33—C34—H34D107.8
C16—C17—N18127.7 (3)H34C—C34—H34D107.2
C16—C17—C25123.5 (3)C34—C35—H35A109.5
N18—C17—C25108.8 (2)C34—C35—H35B109.5
C19—N18—C17107.9 (3)H35A—C35—H35B109.5
C19—N18—H18134.9C34—C35—H35C109.5
C17—N18—H18114.9H35A—C35—H35C109.5
N18—C19—C24110.6 (3)H35B—C35—H35C109.5
N18—C19—C20126.8 (3)C34—C35A—H35D109.5
C24—C19—C20122.6 (3)C34—C35A—H35E109.5
O40—C20—C21128.5 (3)H35D—C35A—H35E109.5
O40—C20—C19114.2 (3)C34—C35A—H35F109.5
C21—C20—C19117.3 (4)H35D—C35A—H35F109.5
C20—C21—C22121.0 (4)H35E—C35A—H35F109.5
C20—C21—H21119.5C6—O36—C37116.7 (2)
C22—C21—H21119.5O36—C37—H37A109.5
C21—C22—C23123.0 (4)O36—C37—H37B109.5
C21—C22—H22118.5H37A—C37—H37B109.5
C23—C22—H22118.5O36—C37—H37C109.5
O42—C23—C22126.7 (4)H37A—C37—H37C109.5
O42—C23—C24116.1 (3)H37B—C37—H37C109.5
C22—C23—C24117.2 (4)C9—O38—C39117.2 (3)
C19—C24—C23118.9 (3)O38—C39—H39A109.5
C19—C24—C25106.2 (3)O38—C39—H39B109.5
C23—C24—C25134.9 (4)H39A—C39—H39B109.5
C26—C25—C17119.7 (2)O38—C39—H39C109.5
C26—C25—C24133.8 (3)H39A—C39—H39C109.5
C17—C25—C24106.4 (3)H39B—C39—H39C109.5
C27—C26—C25117.2 (3)C20—O40—C41115.4 (3)
C27—C26—H26121.4O40—C41—H41A109.5
C25—C26—H26121.4O40—C41—H41B109.5
C26—C27—N1129.5 (3)H41A—C41—H41B109.5
C26—C27—C15121.7 (3)O40—C41—H41C109.5
N1—C27—C15108.7 (2)H41A—C41—H41C109.5
C29A—C28—N1125.8 (8)H41B—C41—H41C109.5
N1—C28—C29110.4 (3)C23—O42—C43112.0 (6)
N1—C28—H28A109.6C23—O42—C43A125.5 (8)
C29—C28—H28A109.6O42—C43—H43A109.5
N1—C28—H28B109.6O42—C43—H43B109.5
C29—C28—H28B109.6H43A—C43—H43B109.5
H28A—C28—H28B108.1O42—C43—H43C109.5
C29A—C28—H28C105.9H43A—C43—H43C109.5
N1—C28—H28C105.9H43B—C43—H43C109.5
C29A—C28—H28D105.9O42—C43A—H43D109.5
N1—C28—H28D105.9O42—C43A—H43E109.5
H28C—C28—H28D106.2H43D—C43A—H43E109.5
C30—C29—C28116.1 (3)O42—C43A—H43F109.5
C30—C29—H29A108.3H43D—C43A—H43F109.5
C28—C29—H29A108.3H43E—C43A—H43F109.5
C30—C29—H29B108.3H1W—O1W—H2W109.4
C28—C29—H29B108.3
C27—N1—C2—C3174.3 (2)N18—C19—C20—C21179.1 (3)
C28—N1—C2—C319.3 (4)C24—C19—C20—C210.9 (4)
C27—N1—C2—C141.0 (3)O40—C20—C21—C22179.9 (3)
C28—N1—C2—C14165.3 (3)C19—C20—C21—C221.1 (5)
N1—C2—C3—C4177.3 (2)C20—C21—C22—C231.1 (6)
C14—C2—C3—C42.4 (4)C21—C22—C23—O42179.7 (3)
C2—C3—C4—C121.9 (3)C21—C22—C23—C240.8 (5)
C2—C3—C4—C5180.0 (3)N18—C19—C24—C23179.4 (3)
C3—C4—C5—C10175.7 (3)C20—C19—C24—C230.7 (4)
C12—C4—C5—C102.7 (3)N18—C19—C24—C250.2 (3)
C3—C4—C5—C61.1 (5)C20—C19—C24—C25179.8 (2)
C12—C4—C5—C6179.5 (3)O42—C23—C24—C19179.6 (3)
C10—C5—C6—O36178.9 (2)C22—C23—C24—C190.6 (4)
C4—C5—C6—O362.4 (5)O42—C23—C24—C251.1 (5)
C10—C5—C6—C71.0 (4)C22—C23—C24—C25179.9 (3)
C4—C5—C6—C7177.4 (3)C16—C17—C25—C260.1 (4)
O36—C6—C7—C8176.4 (3)N18—C17—C25—C26179.4 (2)
C5—C6—C7—C83.4 (5)C16—C17—C25—C24179.7 (2)
C6—C7—C8—C92.4 (6)N18—C17—C25—C240.4 (3)
C7—C8—C9—O38178.6 (3)C19—C24—C25—C26179.6 (3)
C7—C8—C9—C101.1 (6)C23—C24—C25—C260.2 (6)
C8—C9—C10—N11179.7 (3)C19—C24—C25—C170.1 (3)
O38—C9—C10—N110.0 (5)C23—C24—C25—C17179.5 (3)
C8—C9—C10—C53.5 (5)C17—C25—C26—C271.0 (4)
O38—C9—C10—C5176.2 (3)C24—C25—C26—C27178.7 (3)
C6—C5—C10—N11179.3 (2)C25—C26—C27—N1175.9 (2)
C4—C5—C10—N112.0 (3)C25—C26—C27—C151.8 (4)
C6—C5—C10—C92.5 (4)C2—N1—C27—C26177.5 (3)
C4—C5—C10—C9174.8 (3)C28—N1—C27—C2615.8 (4)
C9—C10—N11—C12176.1 (3)C2—N1—C27—C150.4 (3)
C5—C10—N11—C120.5 (3)C28—N1—C27—C15166.3 (2)
C10—N11—C12—C13178.1 (3)C16—C15—C27—C261.6 (4)
C10—N11—C12—C41.3 (3)C14—C15—C27—C26178.5 (2)
C3—C4—C12—C134.4 (4)C16—C15—C27—N1176.4 (2)
C5—C4—C12—C13177.0 (2)C14—C15—C27—N10.4 (3)
C3—C4—C12—N11176.2 (2)C2—N1—C28—C29A45.1 (12)
C5—C4—C12—N112.4 (3)C27—N1—C28—C29A119.3 (12)
N11—C12—C13—C14178.4 (2)C2—N1—C28—C2988.8 (3)
C4—C12—C13—C142.3 (4)C27—N1—C28—C2975.5 (3)
C12—C13—C14—C22.0 (3)N1—C28—C29—C3071.9 (4)
C12—C13—C14—C15176.7 (2)N1—C28—C29A—C3030 (2)
C3—C2—C14—C134.5 (4)C28—C29—C30—C31176.3 (3)
N1—C2—C14—C13179.7 (2)C28—C29A—C30—C31121.9 (13)
C3—C2—C14—C15174.5 (2)C29—C30—C31—C32179.9 (4)
N1—C2—C14—C151.3 (3)C29A—C30—C31—C32139.7 (14)
C13—C14—C15—C163.5 (5)C30—C31—C32—C33176.6 (4)
C2—C14—C15—C16175.4 (3)C31—C32—C33—C34177.4 (5)
C13—C14—C15—C27179.8 (2)C32—C33—C34—C35A60.1 (12)
C2—C14—C15—C271.0 (3)C32—C33—C34—C35172.8 (6)
C27—C15—C16—C170.7 (4)C7—C6—O36—C372.9 (5)
C14—C15—C16—C17176.6 (2)C5—C6—O36—C37177.3 (2)
C15—C16—C17—N18179.1 (2)C8—C9—O38—C3914.1 (5)
C15—C16—C17—C250.1 (4)C10—C9—O38—C39165.6 (3)
C16—C17—N18—C19179.7 (3)C21—C20—O40—C4110.8 (5)
C25—C17—N18—C190.5 (3)C19—C20—O40—C41170.2 (3)
C17—N18—C19—C240.4 (3)C22—C23—O42—C431.7 (6)
C17—N18—C19—C20179.6 (3)C24—C23—O42—C43177.2 (5)
N18—C19—C20—O400.0 (4)C22—C23—O42—C43A28.2 (8)
C24—C19—C20—O40180.0 (3)C24—C23—O42—C43A152.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1W0.882.032.879 (5)162
N11—H11···O1Wi0.882.453.238 (6)149
N18—H18···O36i1.092.033.068 (3)157
O1W—H1W···N110.842.432.879 (5)114
O1W—H1W···O380.842.412.900 (6)118
O1W—H2W···O38i0.752.483.181 (6)158
Symmetry code: (i) xy, x, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCadogan, J. I. G., Cameron-Wood, M., Mackie, R. K. & Searle, R. J. G. (1965). J. Chem. Soc. pp. 4831–4837.  CrossRef Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationKistenmacher, A. & Müllen, K. (1992). J. Heterocycl. Chem. 29, 1237–1239.  CrossRef CAS Google Scholar
First citationLetessier, J. & Detert, H. (2013). Synthesis, 44, 290–296.  Google Scholar
First citationNemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281.  Web of Science CrossRef CAS Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2853.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrour, H., Doan, T.-H., Silva, E. D., Whitby, R. J. & Witulski, B. (2016). J. Mater. Chem. C. 4, 6270–6279.  CrossRef CAS Google Scholar
First citationVlasselaer, M. & Dehaen, W. (2016). Molecules, 21, 7851–785.  CrossRef Google Scholar
First citationWakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386–4388.  Web of Science CSD CrossRef CAS Google Scholar
First citationWrobel, N., Witulski, B., Schollmeyer, D. & Detert, H. (2013). Acta Cryst. E69, o255.  CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-Q., Potscavage, W. J. Jr, Zhang, J.-H., Wei, B. & Huang, R.-J. (2015). Chin. Phys. B24, 0278011–027801/4  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds