organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­anilinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 13 February 2017; accepted 14 February 2017; online 24 February 2017)

In the title mol­ecular salt, C7H10N+·C7H5O6S, the anion is deprotonated at the hy­droxy O atom of the sulfonate group. In the anion, an intra-ionic O—H⋯O hydrogen bond generates an S(6) graph-set motif. In the crystal, the inter-ionic N—H⋯O and O—H⋯O hydrogen bonds generate an R24(12) ring-set motif, linking the anions and cations into an infinite three-dimensional framework. The crystal structure also features C—H⋯π and ππ [centroid-to-centroid distance = 3.5946 (11) Å] inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amino derivatives of benzoic acid are of considerable importance because of their use as anti-inflammatory and anti-cancer agents (Congiu et al., 2005[Congiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem. 48, 8245-8252.]). We herein report the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). The asymmetric unit contains a 4-methyl­anilinium cation and a 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion. The geometric parameters are comparable with those of reported similar structures for 4-methyl­anilinium (Benali-Cherif et al., 2009[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.]) and 3-carb­oxy-4-hy­droxy­benzene­sulfonate (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2153-o2154.]). The cation is protonated at the amine atom N1 and the anion is deprotonated at the hy­droxy atom O5. The O1—H1⋯O3 hydrogen bond generates an S(6) graph-set motif (Fig. 1[link]) in the anion.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with the atom labelling and 30% probability displacement ellipsoids.

A pair of inter-ionic N1—H1A⋯O6i and N1—H1B⋯O4ii hydrogen bonds (for symmetry codes, see Table 1[link]) generate an R24(12) ring-set motif (Fig. 2[link]). In the crystal structure, the inter-ionic N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]) link the adjacent anions and cations into an infinite three-dimensional framework. The crystal structure is also influenced by weak C—H⋯π (Table 1[link]) and ππ [Cg1⋯Cg1(1 − x,1 − y,1 − z) = 3.5946 (11) Å; Cg1 is the centroid of the C8–C13 ring] inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.83 (1) 1.83 (2) 2.587 (2) 150 (3)
N1—H1A⋯O6i 0.89 1.95 2.837 (3) 172
N1—H1B⋯O4ii 0.89 1.94 2.821 (2) 169
O2—H2A⋯O5ii 0.82 (1) 1.79 (1) 2.6159 (19) 176 (3)
N1—H1C⋯O3iii 0.89 2.30 2.7548 (19) 112
N1—H1C⋯O5iv 0.89 2.59 3.461 (3) 166
C10—H10⋯Cg2v 0.93 2.66 3.549 (2) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing showing the ring-set motif.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the a axis. The hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized from p-methyl aniline and 2-hy­droxy-5-sulfo­benzoic acid in a stoichiometric ratio and dissolved in a mixed solvent of water and acetone at ambient temperature. The solution was filtered and allowed to evaporate and yielded crystals suitable for X-ray diffraction after two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H10N+·C7H5O6S
Mr 325.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 9.5114 (8), 12.3080 (11), 12.5537 (11)
β (°) 98.962 (3)
V3) 1451.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.609, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26625, 4730, 3474
Rint 0.040
(sin θ/λ)max−1) 0.738
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.10
No. of reflections 4730
No. of parameters 208
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.76
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-Methylanilinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C7H10N+·C7H5O6SF(000) = 680
Mr = 325.33Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5114 (8) ÅCell parameters from 8665 reflections
b = 12.3080 (11) Åθ = 2.3–31.5°
c = 12.5537 (11) ŵ = 0.25 mm1
β = 98.962 (3)°T = 295 K
V = 1451.7 (2) Å3Block, colourless
Z = 40.24 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD Diffractometer3474 reflections with I > 2σ(I)
ω and φ scanRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 31.6°, θmin = 2.3°
Tmin = 0.609, Tmax = 0.746h = 1413
26625 measured reflectionsk = 1717
4730 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.973P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.40 e Å3
4730 reflectionsΔρmin = 0.76 e Å3
208 parametersExtinction correction: SHELXL2016 (Sheldrick, 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.030 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41299 (18)1.08104 (15)0.28078 (14)0.0309 (4)
C20.3200 (2)1.16342 (16)0.29414 (16)0.0352 (4)
H20.3116471.2235760.2487630.042*
C30.2388 (2)1.15537 (17)0.37648 (16)0.0387 (4)
H30.1750951.2106200.3857360.046*
C40.2507 (2)1.06667 (18)0.44518 (15)0.0385 (4)
C50.3410 (2)0.98278 (19)0.42574 (17)0.0438 (5)
H50.3467200.9208940.4687050.053*
C60.4227 (2)0.98922 (18)0.34377 (17)0.0403 (4)
H60.4829240.9325530.3316070.048*
C70.1721 (3)1.0633 (2)0.54056 (19)0.0593 (7)
H7A0.2309801.0937390.6024440.089*
H7B0.1495000.9893700.5553400.089*
H7C0.0858691.1047110.5246190.089*
C80.36092 (18)0.65002 (14)0.58334 (13)0.0283 (3)
C90.4344 (2)0.59570 (16)0.67204 (14)0.0344 (4)
H90.3895130.5810160.7311680.041*
C100.5734 (2)0.56345 (16)0.67298 (14)0.0357 (4)
H100.6216030.5262400.7321260.043*
C110.64165 (18)0.58672 (15)0.58512 (14)0.0298 (3)
C120.56786 (17)0.64118 (13)0.49562 (12)0.0250 (3)
C130.42673 (17)0.67244 (14)0.49550 (13)0.0264 (3)
H130.3771170.7084110.4361150.032*
C140.63914 (18)0.66439 (15)0.40202 (14)0.0290 (3)
N10.50396 (18)1.09139 (15)0.19685 (14)0.0400 (4)
H1A0.4573171.1275200.1408220.060*
H1B0.5267631.0255680.1756740.060*
H1C0.5829111.1273700.2232310.060*
O10.77811 (15)0.55499 (14)0.58997 (12)0.0447 (4)
O20.55929 (15)0.71141 (14)0.32111 (11)0.0442 (4)
O30.76397 (14)0.64117 (14)0.40068 (12)0.0438 (4)
O40.11033 (19)0.60551 (15)0.62629 (18)0.0701 (6)
O50.1984 (2)0.78754 (13)0.65703 (13)0.0531 (4)
O60.12809 (16)0.72387 (15)0.47508 (13)0.0517 (4)
S10.18523 (5)0.69380 (4)0.58472 (4)0.03677 (15)
H10.804 (3)0.576 (2)0.5332 (13)0.055*
H2A0.601 (3)0.715 (2)0.2685 (15)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (8)0.0397 (9)0.0268 (8)0.0058 (7)0.0066 (6)0.0079 (7)
C20.0398 (10)0.0326 (9)0.0351 (9)0.0034 (7)0.0115 (8)0.0064 (7)
C30.0365 (9)0.0413 (10)0.0403 (10)0.0034 (8)0.0121 (8)0.0140 (8)
C40.0346 (9)0.0506 (11)0.0315 (9)0.0148 (8)0.0090 (7)0.0103 (8)
C50.0491 (12)0.0487 (12)0.0340 (10)0.0033 (9)0.0072 (9)0.0055 (9)
C60.0375 (10)0.0463 (11)0.0371 (10)0.0067 (8)0.0059 (8)0.0023 (8)
C70.0565 (14)0.0821 (18)0.0453 (13)0.0183 (13)0.0266 (11)0.0090 (12)
C80.0302 (8)0.0322 (8)0.0250 (8)0.0026 (7)0.0121 (6)0.0036 (6)
C90.0424 (10)0.0411 (10)0.0222 (8)0.0052 (8)0.0122 (7)0.0010 (7)
C100.0405 (10)0.0416 (10)0.0243 (8)0.0006 (8)0.0034 (7)0.0076 (7)
C110.0285 (8)0.0321 (8)0.0286 (8)0.0014 (7)0.0041 (6)0.0030 (7)
C120.0260 (7)0.0284 (8)0.0218 (7)0.0017 (6)0.0077 (6)0.0006 (6)
C130.0276 (7)0.0312 (8)0.0216 (7)0.0006 (6)0.0081 (6)0.0013 (6)
C140.0271 (7)0.0343 (8)0.0277 (8)0.0008 (6)0.0107 (6)0.0018 (7)
N10.0364 (8)0.0490 (10)0.0380 (9)0.0026 (7)0.0170 (7)0.0066 (7)
O10.0306 (7)0.0602 (10)0.0437 (8)0.0088 (6)0.0067 (6)0.0175 (7)
O20.0345 (7)0.0713 (10)0.0301 (7)0.0101 (7)0.0157 (5)0.0189 (7)
O30.0292 (6)0.0624 (10)0.0435 (8)0.0085 (6)0.0170 (6)0.0121 (7)
O40.0482 (9)0.0539 (10)0.1196 (17)0.0002 (8)0.0485 (10)0.0197 (11)
O50.0716 (11)0.0506 (9)0.0456 (9)0.0087 (8)0.0357 (8)0.0088 (7)
O60.0382 (8)0.0744 (11)0.0441 (9)0.0165 (8)0.0111 (6)0.0048 (8)
S10.0362 (2)0.0396 (3)0.0400 (3)0.00331 (19)0.02343 (19)0.00040 (19)
Geometric parameters (Å, º) top
C1—C21.373 (3)C9—H90.9300
C1—C61.374 (3)C10—C111.394 (2)
C1—N11.469 (2)C10—H100.9300
C2—C31.387 (3)C11—O11.348 (2)
C2—H20.9300C11—C121.400 (2)
C3—C41.385 (3)C12—C131.396 (2)
C3—H30.9300C12—C141.473 (2)
C4—C51.389 (3)C13—H130.9300
C4—C71.508 (3)C14—O31.224 (2)
C5—C61.385 (3)C14—O21.305 (2)
C5—H50.9300N1—H1A0.8900
C6—H60.9300N1—H1B0.8900
C7—H7A0.9600N1—H1C0.8900
C7—H7B0.9600O1—H10.829 (10)
C7—H7C0.9600O2—H2A0.824 (10)
C8—C131.378 (2)O4—S11.4411 (17)
C8—C91.390 (3)O5—S11.4612 (16)
C8—S11.7585 (17)O6—S11.4470 (17)
C9—C101.379 (3)
C2—C1—C6121.61 (17)C9—C10—C11119.87 (17)
C2—C1—N1119.08 (17)C9—C10—H10120.1
C6—C1—N1119.32 (17)C11—C10—H10120.1
C1—C2—C3118.85 (19)O1—C11—C10117.93 (16)
C1—C2—H2120.6O1—C11—C12122.28 (15)
C3—C2—H2120.6C10—C11—C12119.78 (16)
C4—C3—C2121.28 (19)C13—C12—C11119.65 (14)
C4—C3—H3119.4C13—C12—C14120.50 (15)
C2—C3—H3119.4C11—C12—C14119.84 (15)
C3—C4—C5118.01 (17)C8—C13—C12120.03 (16)
C3—C4—C7120.9 (2)C8—C13—H13120.0
C5—C4—C7121.1 (2)C12—C13—H13120.0
C6—C5—C4121.5 (2)O3—C14—O2122.76 (15)
C6—C5—H5119.3O3—C14—C12122.26 (16)
C4—C5—H5119.3O2—C14—C12114.99 (14)
C1—C6—C5118.64 (19)C1—N1—H1A109.5
C1—C6—H6120.7C1—N1—H1B109.5
C5—C6—H6120.7H1A—N1—H1B109.5
C4—C7—H7A109.5C1—N1—H1C109.5
C4—C7—H7B109.5H1A—N1—H1C109.5
H7A—C7—H7B109.5H1B—N1—H1C109.5
C4—C7—H7C109.5C11—O1—H1106.3 (19)
H7A—C7—H7C109.5C14—O2—H2A110.5 (19)
H7B—C7—H7C109.5O4—S1—O6113.81 (13)
C13—C8—C9120.18 (16)O4—S1—O5111.70 (11)
C13—C8—S1119.83 (14)O6—S1—O5111.85 (10)
C9—C8—S1119.97 (12)O4—S1—C8107.26 (10)
C10—C9—C8120.47 (15)O6—S1—C8106.60 (8)
C10—C9—H9119.8O5—S1—C8104.98 (10)
C8—C9—H9119.8
C6—C1—C2—C32.9 (3)O1—C11—C12—C140.7 (3)
N1—C1—C2—C3177.26 (17)C10—C11—C12—C14179.09 (17)
C1—C2—C3—C40.4 (3)C9—C8—C13—C120.4 (3)
C2—C3—C4—C53.4 (3)S1—C8—C13—C12177.76 (13)
C2—C3—C4—C7174.4 (2)C11—C12—C13—C80.2 (3)
C3—C4—C5—C63.3 (3)C14—C12—C13—C8179.79 (16)
C7—C4—C5—C6174.5 (2)C13—C12—C14—O3177.70 (18)
C2—C1—C6—C53.0 (3)C11—C12—C14—O32.7 (3)
N1—C1—C6—C5177.11 (18)C13—C12—C14—O22.3 (3)
C4—C5—C6—C10.1 (3)C11—C12—C14—O2177.28 (17)
C13—C8—C9—C100.2 (3)C13—C8—S1—O4136.91 (17)
S1—C8—C9—C10178.34 (15)C9—C8—S1—O444.95 (19)
C8—C9—C10—C110.9 (3)C13—C8—S1—O614.65 (18)
C9—C10—C11—O1179.15 (18)C9—C8—S1—O6167.20 (16)
C9—C10—C11—C121.0 (3)C13—C8—S1—O5104.14 (15)
O1—C11—C12—C13179.73 (17)C9—C8—S1—O574.00 (17)
C10—C11—C12—C130.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.83 (1)1.83 (2)2.587 (2)150 (3)
N1—H1A···O6i0.891.952.837 (3)172
N1—H1B···O4ii0.891.942.821 (2)169
O2—H2A···O5ii0.82 (1)1.79 (1)2.6159 (19)176 (3)
N1—H1C···O3iii0.892.302.7548 (19)112
N1—H1C···O5iv0.892.593.461 (3)166
C10—H10···Cg2v0.932.663.549 (2)160
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+2, z+1; (v) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCongiu, C., Cocco, M. T., Lilliu, V. & Onnis, V. (2005). J. Med. Chem. 48, 8245–8252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2153–o2154.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds