organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1-(6-bromo­hex­yl)indoline-2,3-dione

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 31 May 2016; accepted 31 May 2016; online 17 June 2016)

In the title compound, C14H15Br2NO2, the dihedral angle between the mean plane passing through the bromo­hexyl chain and the 5-bromo­indoline ring system (r.m.s. deviation = 0.044Å) is 70.0 (3)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, generating zigzag chains propagating along [010]. The packing is also influenced by inter-chain ππ inter­actions which form layers parallel to the ab plane [centroid–centroid distances = 3.765 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin derivatives have a wide range of biological properties and show pharmacological activity against bacteria and fungi (Pandeya et al., 2005[Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.]; Vine et al., 2007[Vine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931-938.]). The most demanding prospect of research surrounding isatin derivatives has evolved in the context of their anti­fungal and anti­viral activities (Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]). The significance of isatin derivatives has even been extended to the design of novel anti­cancer drugs (Rodríuez-Argüelles et al., 2004[Rodríuez-Argüelles, M. C., Belicchi errari, M., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.]), and recently, a number of isatin-based compounds have been reported to be inhibitors of caspase-3 and caspase-7 (Chu et al., 2007[Chu, W., Rothfuss, J., d'Avignon, A., Zeng, C., Zhou, D., Hotchkiss, R. S. & Mach, R. H. (2007). J. Med. Chem. 50, 3751-3755.]). As part of a continuing study on halogenated isatins (Kharbach et al., 2016a[Kharbach, Y., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2016a). IUCrData, 1, x160371.], Kharbach et al., 2016b[Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016b). IUCrData, 1, x160559.]), the structures of N-substituted derivatives of isatin have been reported using 1,3-di­bromo­propane (Qachchachi et al., 2016[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016). IUCrData, 1, x160593.]). Herein, we report the crystal structure of 5-bromo-1-(6-bromo­hex­yl)indoline-2,3-dione, obtained using 1,6-di­bromo­hexane as an alkyl­ating agent as part of our work to develop new 5-bromo­isatin derivatives.

In the title compound (Fig. 1[link]), the dihedral angle between the mean plane passing through the bromo­hexyl chain and the 5-bromo-indoline ring system (r.m.s. deviation: 0.044 Å is 70.0 (3)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds (Table 1[link]), generating zigzag chains propagating in the [010] direction. The packing (Fig. 2[link]) is also influenced by inter-chain ππ inter­actions which form layers parallel to the ab plane [centroid-centroid distances = 3.765 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.58 3.406 (5) 148
C10—H10A⋯O1ii 0.97 2.53 3.364 (5) 143
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The crystal structure of the title compound, viewed along the c axis, showing zigzag chains parallel to the b axis linked by C— H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

To a solution of 5-bromo­isatin (0.4 g, 1.76 mmol) and 1,6-di­bromo­hexane (0,31 ml, 1.95 mmol) in DMF (25 ml), was added tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol). The reaction mixture was stirred for 48 h. After filtering, the solution was evaporated in reduced pressure. The title compound was obtained in 84% yield and recrystallized from ethanol solution to afford orange crystals (m.p. 355 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H15Br2NO2
Mr 389.09
Crystal system, space group Orthorhombic, P212121
Temperature (K) 299
a, b, c (Å) 4.6344 (2), 12.6284 (6), 25.3537 (12)
V3) 1483.83 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.46
Crystal size (mm) 0.22 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.576, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 28990, 3663, 2699
Rint 0.039
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.072, 1.02
No. of reflections 3663
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.52
Absolute structure Flack x determined using 932 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.006 (4)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5-Bromo-1-(6-bromohexyl)indoline-2,3-dione top
Crystal data top
C14H15Br2NO2Dx = 1.742 Mg m3
Mr = 389.09Melting point: 355 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8821 reflections
a = 4.6344 (2) Åθ = 2.9–23.7°
b = 12.6284 (6) ŵ = 5.46 mm1
c = 25.3537 (12) ÅT = 299 K
V = 1483.83 (12) Å3Platelet, orange
Z = 40.22 × 0.11 × 0.05 mm
F(000) = 768
Data collection top
Bruker APEXII CCD
diffractometer
2699 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.576, Tmax = 0.746h = 66
28990 measured reflectionsk = 1615
3663 independent reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.7737P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3663 reflectionsΔρmax = 0.45 e Å3
172 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack x determined using 932 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.97543 (11)0.74683 (4)0.93893 (2)0.06086 (16)
Br20.48372 (15)0.60074 (4)0.45917 (2)0.07524 (19)
C10.7295 (9)0.7167 (3)0.88077 (16)0.0400 (10)
C20.6607 (10)0.7974 (3)0.84574 (17)0.0420 (10)
H20.74250.86410.85020.050*
C30.4716 (11)0.7800 (3)0.80417 (15)0.0403 (9)
H30.42250.83420.78100.048*
C40.3591 (8)0.6796 (3)0.79838 (14)0.0317 (9)
C50.4348 (8)0.5988 (3)0.83316 (14)0.0342 (9)
C60.6199 (9)0.6160 (3)0.87463 (16)0.0399 (10)
H60.66930.56160.89770.048*
C70.2780 (10)0.5037 (3)0.81645 (16)0.0391 (9)
C80.0976 (10)0.5385 (3)0.76811 (17)0.0429 (11)
C90.0365 (10)0.7071 (3)0.71786 (15)0.0414 (9)
H9A0.01000.77670.73170.050*
H9B0.14220.67430.70650.050*
C100.2323 (9)0.7199 (3)0.67068 (16)0.0407 (10)
H10A0.40800.75500.68190.049*
H10B0.13790.76540.64520.049*
C110.3121 (10)0.6165 (3)0.64382 (16)0.0416 (10)
H11A0.13740.57690.63640.050*
H11B0.42920.57450.66770.050*
C120.4772 (11)0.6332 (3)0.59266 (16)0.0496 (10)
H12A0.35800.67380.56860.060*
H12B0.64900.67450.60000.060*
C130.5652 (11)0.5312 (4)0.56595 (17)0.0553 (12)
H13A0.68420.49080.59020.066*
H13B0.39290.48990.55900.066*
C140.7274 (12)0.5448 (5)0.5153 (2)0.0712 (15)
H14A0.80530.47690.50440.085*
H14B0.88810.59270.52100.085*
N10.1629 (7)0.6432 (2)0.76016 (13)0.0353 (7)
O10.2758 (8)0.4155 (2)0.83436 (13)0.0592 (9)
O20.0693 (8)0.4850 (2)0.74288 (13)0.0603 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0551 (3)0.0779 (3)0.0496 (3)0.0053 (3)0.0101 (3)0.0151 (2)
Br20.0904 (4)0.0907 (4)0.0447 (3)0.0124 (4)0.0123 (3)0.0084 (2)
C10.035 (2)0.047 (2)0.038 (2)0.0017 (18)0.0012 (19)0.0089 (19)
C20.047 (2)0.035 (2)0.045 (3)0.0051 (19)0.006 (2)0.0083 (19)
C30.050 (2)0.0298 (18)0.041 (2)0.001 (2)0.000 (2)0.0024 (14)
C40.035 (2)0.0316 (19)0.028 (2)0.0048 (16)0.0040 (17)0.0029 (15)
C50.039 (2)0.0302 (17)0.0330 (19)0.0030 (17)0.0041 (17)0.0016 (15)
C60.047 (2)0.037 (2)0.035 (2)0.0071 (18)0.0012 (18)0.0037 (18)
C70.047 (2)0.034 (2)0.036 (2)0.0003 (18)0.005 (2)0.0000 (17)
C80.051 (3)0.036 (2)0.042 (2)0.002 (2)0.006 (2)0.0039 (19)
C90.042 (2)0.0414 (19)0.041 (2)0.007 (2)0.004 (2)0.0021 (16)
C100.047 (2)0.036 (2)0.040 (2)0.0064 (17)0.002 (2)0.0052 (17)
C110.045 (2)0.044 (2)0.036 (2)0.005 (2)0.0016 (19)0.0003 (18)
C120.054 (3)0.052 (2)0.043 (2)0.000 (3)0.001 (3)0.0028 (17)
C130.064 (3)0.061 (3)0.040 (2)0.013 (2)0.004 (2)0.000 (2)
C140.063 (3)0.094 (4)0.056 (3)0.015 (3)0.008 (3)0.009 (3)
N10.0437 (19)0.0297 (16)0.0325 (18)0.0013 (14)0.0024 (15)0.0004 (14)
O10.083 (3)0.0332 (16)0.062 (2)0.0068 (16)0.0018 (19)0.0053 (14)
O20.071 (3)0.0488 (18)0.061 (2)0.0179 (18)0.0154 (19)0.0060 (15)
Geometric parameters (Å, º) top
Br1—C11.902 (4)C9—C101.510 (6)
Br2—C141.949 (5)C9—H9A0.9700
C1—C61.379 (6)C9—H9B0.9700
C1—C21.389 (6)C10—C111.518 (5)
C2—C31.388 (6)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.379 (5)C11—C121.521 (6)
C3—H30.9300C11—H11A0.9700
C4—C51.393 (5)C11—H11B0.9700
C4—N11.406 (5)C12—C131.511 (6)
C5—C61.374 (6)C12—H12A0.9700
C5—C71.466 (6)C12—H12B0.9700
C6—H60.9300C13—C141.498 (7)
C7—O11.203 (5)C13—H13A0.9700
C7—C81.547 (6)C13—H13B0.9700
C8—O21.210 (5)C14—H14A0.9700
C8—N11.371 (5)C14—H14B0.9700
C9—N11.465 (5)
C6—C1—C2121.3 (4)C11—C10—H10A108.7
C6—C1—Br1119.5 (3)C9—C10—H10B108.7
C2—C1—Br1119.1 (3)C11—C10—H10B108.7
C3—C2—C1120.9 (4)H10A—C10—H10B107.6
C3—C2—H2119.5C10—C11—C12112.7 (3)
C1—C2—H2119.5C10—C11—H11A109.1
C4—C3—C2117.7 (3)C12—C11—H11A109.1
C4—C3—H3121.1C10—C11—H11B109.1
C2—C3—H3121.1C12—C11—H11B109.1
C3—C4—C5120.7 (4)H11A—C11—H11B107.8
C3—C4—N1128.2 (3)C13—C12—C11113.6 (3)
C5—C4—N1111.1 (3)C13—C12—H12A108.9
C6—C5—C4121.8 (3)C11—C12—H12A108.9
C6—C5—C7131.2 (4)C13—C12—H12B108.9
C4—C5—C7107.0 (3)C11—C12—H12B108.9
C5—C6—C1117.5 (4)H12A—C12—H12B107.7
C5—C6—H6121.3C14—C13—C12114.9 (4)
C1—C6—H6121.3C14—C13—H13A108.5
O1—C7—C5130.8 (4)C12—C13—H13A108.5
O1—C7—C8123.9 (4)C14—C13—H13B108.5
C5—C7—C8105.3 (3)C12—C13—H13B108.5
O2—C8—N1127.0 (4)H13A—C13—H13B107.5
O2—C8—C7127.3 (4)C13—C14—Br2112.2 (3)
N1—C8—C7105.7 (3)C13—C14—H14A109.2
N1—C9—C10113.5 (4)Br2—C14—H14A109.2
N1—C9—H9A108.9C13—C14—H14B109.2
C10—C9—H9A108.9Br2—C14—H14B109.2
N1—C9—H9B108.9H14A—C14—H14B107.9
C10—C9—H9B108.9C8—N1—C4110.9 (3)
H9A—C9—H9B107.7C8—N1—C9123.4 (3)
C9—C10—C11114.2 (3)C4—N1—C9125.6 (3)
C9—C10—H10A108.7
C6—C1—C2—C32.0 (7)C5—C7—C8—O2178.0 (4)
Br1—C1—C2—C3177.0 (3)O1—C7—C8—N1179.4 (4)
C1—C2—C3—C41.2 (6)C5—C7—C8—N11.2 (4)
C2—C3—C4—C50.2 (6)N1—C9—C10—C1160.9 (5)
C2—C3—C4—N1179.2 (4)C9—C10—C11—C12172.7 (4)
C3—C4—C5—C60.8 (6)C10—C11—C12—C13178.6 (4)
N1—C4—C5—C6178.7 (4)C11—C12—C13—C14179.8 (4)
C3—C4—C5—C7179.6 (4)C12—C13—C14—Br269.3 (5)
N1—C4—C5—C70.1 (4)O2—C8—N1—C4178.0 (4)
C4—C5—C6—C10.0 (6)C7—C8—N1—C41.2 (4)
C7—C5—C6—C1178.4 (4)O2—C8—N1—C90.7 (7)
C2—C1—C6—C51.4 (6)C7—C8—N1—C9179.9 (4)
Br1—C1—C6—C5177.7 (3)C3—C4—N1—C8178.7 (4)
C6—C5—C7—O11.6 (8)C5—C4—N1—C80.8 (5)
C4—C5—C7—O1179.9 (5)C3—C4—N1—C90.1 (6)
C6—C5—C7—C8177.9 (4)C5—C4—N1—C9179.4 (4)
C4—C5—C7—C80.7 (4)C10—C9—N1—C8100.0 (5)
O1—C7—C8—O21.5 (7)C10—C9—N1—C481.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.583.406 (5)148
C10—H10A···O1ii0.972.533.364 (5)143
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, W., Rothfuss, J., d'Avignon, A., Zeng, C., Zhou, D., Hotchkiss, R. S. & Mach, R. H. (2007). J. Med. Chem. 50, 3751–3755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKharbach, Y., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2016a). IUCrData, 1, x160371.  Google Scholar
First citationKharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016b). IUCrData, 1, x160559.  Google Scholar
First citationPandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27–46.  PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016). IUCrData, 1, x160593.  Google Scholar
First citationRodríuez-Argüelles, M. C., Belicchi errari, M., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321.  PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Benkendorff, K., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds