organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,6-Di­acetyl-2-iso­propyl-4,7-di­methyl­naphthalene

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ac.ma

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 24 April 2016; accepted 26 April 2016; online 29 April 2016)

The title compound, C19H22O2, was synthesized in three steps from a mixture of α-, β- and γ-himachalene, which was isolated from an essential oil of the Atlas cedar (Cedrus atlantica). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains running parallel to the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpene hydro­carbons (α-,β- and γ -himachalene; El Haib et al., 2010[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Daran, J. C., Urrutigoïty, M. & Gouygou, M. (2010). Tetrahedron Asymmetry, 21, 1272-1277.]). The reactivity of these sesquiterpenes and their derivatives has been studied extensively by our team in order to prepare new products with biological properties (Chekroun et al., 2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]; El Jamili et al., 2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]; Dakir et al., 2004[Dakir, M., Auhmani, A., Itto, M. Y. A., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]; El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]; Zaki et al.,2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]; Benharref et al., 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.]). Indeed, these compounds have been tested, using the food-poisoning technique, for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927-932.]). We present in this paper the crystal structure of the title compound, namely 1,6-diacetyl-2-isopropyl-4,7-di­methyl­naphthalene (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the mol­ecule of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains running parallel to [010] (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1i 0.96 2.53 3.300 (3) 137
C13—H13B⋯O2ii 0.96 2.63 3.565 (3) 166
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.
[Figure 2]
Figure 2
A partial packing diagram of the title compound viewed along the a axis, showing the C—H⋯O hydrogen bonds as dashed lines (see Table 1[link]). H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

6 g (30 mmol) of aryl himachalene (Daunis et al., 1980[Daunis, J., Jacquier, R., Lopez, H. & Viallefont, P. (1980). J. Chem. Commun. pp. 639-649.])) solubilized in 80 ml of cyclo­hexane with an equivalent of aluminium chloride (AlCl3) was stirred at room temperature for 48 h. After addition of 50 ml of water, the reaction mixture was extracted three times with 50 ml of cyclo­hexane. The organic phases were combined, then dried over sodium sulfate and concentrated in vacuo. Chromatography of the residue obtained on silica with hexane eluent allowed the isolation of 1,6-dimethyl-4-iso­propyl­enaphtalene. 3 g (10 mmol) of the latter were treated with two equivalents of acetyl chloride in the presence of two aluminium chloride equivalents in 50 ml di­chloro­methane with stirring at room temperature for 6 h. After addition of 30 ml water, the reaction mixture was extracted three times with 20 ml of di­chloro­methane. The organic phases were combined, dried over sodium sulfate and then concentrated in vacuo. Chromatography on silica gel column with hexa­ne–ethyl acetate (97/3) as eluent of the residue obtained allowed us to obtain the title product in 60% yield (1.5 g; 6 mmol), which was recrystallized from cyclo­hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H22O2
Mr 282.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.8316 (14), 8.7542 (11), 17.959 (2)
β (°) 106.322 (5)
V3) 1634.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.26 × 0.18
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22755, 2882, 2283
Rint 0.035
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.03
No. of reflections 2882
No. of parameters 197
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbon(α-,β- and γ -himachalene) (El Haib et al., 2010). The reactivity of these sesquiterpenes and their derivatives has been studied extensively by our team in order to prepare new products having biological proprieties(Chekroun et al., 2000; El Jamili et al., 2002; Dakir et al., 2004; El Haib et al., 2011 ; Zaki et al.,2014; Benharref et al., 2015). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). We present in this paper the crystal structure of the title compound, namely 1,6-diacetyl-4,7-dimethyl-2-isopropylnaphtalene In the crystal, molecules are linked by C-H···O hydrogen bonds into chains running parallel to [010] (Fig. 2 and Table 1).

Experimental top

6 g (30 mmol) of aryl himachalene (Daunis et al., 1980)) solubilized in 80 ml of cyclohexane with an equivalent of aluminium chloride (AlCl3) was brought to a stir at room temperature for 48 h. After addition of 50 ml of water, the reaction mixture was extracted three times with 50 ml of cyclohexane. The organic phases were combined, then dried over sodium sulfate and concentrated in vacuo. Chromatography of the residue obtained on silica with hexane eluent allowed the isolation of 1,6-dimethyl-4- isopropylenaphtalene. 3 g (10 mmol) of the latter were treated with two equivalents of acetyl chloride in the presence of two aluminium chloride equivalents in 50 ml dichloromethane with stirring at room temperature for 6 h. After addition of 30 ml water, the reaction mixture was extracted three times with 20 ml of dichloromethane. The organic phases were combined and then dried over sodium sulfate and concentrated in vacuo. Chromatography on silica gel column with hexane–ethyl acetate (97/3) as eluent of the residue obtained allowed us to obtain, in 60% yield (1.5 g; 6 mmol), the title product which was recrystallized from cyclohexane.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpene hydrocarbons (α-,β- and γ -himachalene; El Haib et al., 2010). The reactivity of these sesquiterpenes and their derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Chekroun et al., 2000; El Jamili et al., 2002; Dakir et al., 2004; El Haib et al., 2011; Zaki et al.,2014; Benharref et al., 2015). Indeed, these compounds have been tested, using the food-poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004). We present in this paper the crystal structure of the title compound, namely 1,6-diacetyl-2-isopropyl-4,7-dimethylnaphthalene (Fig. 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds into chains running parallel to [010] (Fig. 2 and Table 1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the molecule of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound with view along the a axis, showing the C—H···O hydrogen bonds as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
1-[6-Acetyl-4,7-dimethyl-2-(propan-2-yl)naphthalen-1-yl]ethanone top
Crystal data top
C19H22O2F(000) = 608
Mr = 282.36Dx = 1.148 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8316 (14) ÅCell parameters from 2882 reflections
b = 8.7542 (11) Åθ = 2.4–25°
c = 17.959 (2) ŵ = 0.07 mm1
β = 106.322 (5)°T = 296 K
V = 1634.3 (4) Å3Prism, colourless
Z = 40.30 × 0.26 × 0.18 mm
Data collection top
Bruker X8 APEX
diffractometer
2882 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.661, Tmax = 0.746k = 1010
22755 measured reflectionsl = 1421
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.4554P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.19 e Å3
2882 reflectionsΔρmin = 0.19 e Å3
197 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (2)
Crystal data top
C19H22O2V = 1634.3 (4) Å3
Mr = 282.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8316 (14) ŵ = 0.07 mm1
b = 8.7542 (11) ÅT = 296 K
c = 17.959 (2) Å0.30 × 0.26 × 0.18 mm
β = 106.322 (5)°
Data collection top
Bruker X8 APEX
diffractometer
2882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2283 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.746Rint = 0.035
22755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2882 reflectionsΔρmin = 0.19 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81936 (14)0.56149 (17)0.49024 (8)0.0473 (4)
C20.80033 (16)0.60153 (18)0.56311 (9)0.0531 (4)
C30.74085 (17)0.4994 (2)0.59860 (9)0.0577 (4)
H30.73010.52500.64670.069*
C40.69453 (16)0.35631 (19)0.56601 (9)0.0545 (4)
C50.71358 (15)0.31607 (18)0.49623 (9)0.0510 (4)
C60.77757 (14)0.41725 (17)0.45708 (8)0.0472 (4)
C70.79785 (15)0.38130 (19)0.38449 (9)0.0537 (4)
H70.77290.28530.36340.064*
C80.85203 (15)0.4801 (2)0.34377 (9)0.0544 (4)
C90.88969 (14)0.6273 (2)0.37626 (9)0.0527 (4)
C100.87436 (14)0.66239 (19)0.44775 (9)0.0513 (4)
H100.90170.75760.46900.062*
C110.94266 (17)0.7471 (2)0.33456 (11)0.0670 (5)
C120.9756 (2)0.9008 (3)0.37039 (14)0.0879 (7)
H12A1.04620.89170.41650.132*
H12B0.90230.94240.38340.132*
H12C0.99950.96740.33430.132*
C130.8432 (2)0.7548 (2)0.59917 (11)0.0700 (5)
H13A0.82460.76190.64820.105*
H13B0.79840.83420.56540.105*
H13C0.93410.76610.60690.105*
C140.8693 (2)0.4276 (3)0.26730 (11)0.0768 (6)
H14A0.84070.32380.25780.115*
H14B0.95860.43400.26910.115*
H14C0.81970.49160.22640.115*
C150.6621 (2)0.1680 (2)0.45720 (10)0.0640 (5)
C160.5265 (2)0.1683 (3)0.40725 (12)0.0859 (7)
H16A0.51870.23720.36460.129*
H16B0.47060.20090.43720.129*
H16C0.50300.06720.38780.129*
C170.62188 (19)0.2547 (2)0.60792 (10)0.0651 (5)
H170.59310.16490.57500.078*
C180.5033 (2)0.3321 (4)0.61719 (19)0.1212 (11)
H18A0.44980.25840.63270.182*
H18B0.45670.37720.56870.182*
H18C0.52770.41030.65610.182*
C190.7058 (2)0.1975 (3)0.68441 (13)0.0956 (8)
H19A0.73480.28240.71870.143*
H19B0.77870.14480.67630.143*
H19C0.65740.12870.70700.143*
O10.95852 (19)0.7233 (2)0.27178 (9)0.1080 (6)
O20.72864 (19)0.05639 (17)0.46404 (10)0.1089 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (8)0.0495 (8)0.0422 (8)0.0013 (7)0.0092 (6)0.0018 (7)
C20.0615 (10)0.0526 (9)0.0432 (8)0.0014 (7)0.0116 (7)0.0018 (7)
C30.0730 (11)0.0621 (10)0.0393 (8)0.0039 (8)0.0180 (8)0.0014 (7)
C40.0630 (10)0.0563 (10)0.0436 (9)0.0037 (8)0.0140 (7)0.0056 (7)
C50.0604 (9)0.0476 (9)0.0434 (8)0.0014 (7)0.0119 (7)0.0034 (7)
C60.0501 (8)0.0485 (9)0.0411 (8)0.0026 (7)0.0099 (6)0.0024 (6)
C70.0598 (9)0.0538 (9)0.0470 (9)0.0026 (7)0.0142 (7)0.0049 (7)
C80.0503 (9)0.0702 (11)0.0431 (8)0.0009 (8)0.0138 (7)0.0000 (8)
C90.0445 (8)0.0652 (10)0.0463 (9)0.0043 (7)0.0095 (7)0.0049 (7)
C100.0503 (8)0.0523 (9)0.0486 (9)0.0050 (7)0.0095 (7)0.0008 (7)
C110.0593 (10)0.0865 (13)0.0543 (11)0.0131 (9)0.0142 (8)0.0092 (9)
C120.0964 (15)0.0813 (14)0.0904 (15)0.0289 (12)0.0336 (12)0.0106 (12)
C130.0930 (14)0.0613 (11)0.0572 (11)0.0128 (10)0.0235 (10)0.0111 (9)
C140.0855 (13)0.0956 (15)0.0561 (11)0.0134 (11)0.0312 (10)0.0097 (10)
C150.0930 (13)0.0500 (10)0.0506 (10)0.0097 (9)0.0229 (9)0.0041 (8)
C160.0970 (16)0.0872 (15)0.0702 (13)0.0348 (12)0.0183 (11)0.0142 (11)
C170.0790 (12)0.0675 (11)0.0509 (10)0.0125 (9)0.0217 (9)0.0079 (8)
C180.0802 (15)0.135 (2)0.165 (3)0.0122 (15)0.0611 (17)0.065 (2)
C190.0925 (15)0.123 (2)0.0755 (14)0.0023 (14)0.0300 (12)0.0447 (14)
O10.1458 (15)0.1222 (14)0.0704 (10)0.0479 (12)0.0536 (10)0.0013 (9)
O20.1494 (16)0.0535 (9)0.1100 (13)0.0131 (10)0.0139 (11)0.0042 (8)
Geometric parameters (Å, º) top
C1—C101.405 (2)C12—H12B0.9600
C1—C61.415 (2)C12—H12C0.9600
C1—C21.425 (2)C13—H13A0.9600
C2—C31.360 (2)C13—H13B0.9600
C2—C131.506 (2)C13—H13C0.9600
C3—C41.414 (2)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.372 (2)C14—H14C0.9600
C4—C171.520 (2)C15—O21.200 (2)
C5—C61.426 (2)C15—C161.490 (3)
C5—C151.505 (2)C16—H16A0.9600
C6—C71.417 (2)C16—H16B0.9600
C7—C81.367 (2)C16—H16C0.9600
C7—H70.9300C17—C181.502 (3)
C8—C91.426 (2)C17—C191.504 (3)
C8—C141.509 (2)C17—H170.9800
C9—C101.375 (2)C18—H18A0.9600
C9—C111.494 (2)C18—H18B0.9600
C10—H100.9300C18—H18C0.9600
C11—O11.205 (2)C19—H19A0.9600
C11—C121.491 (3)C19—H19B0.9600
C12—H12A0.9600C19—H19C0.9600
C10—C1—C6117.83 (14)C2—C13—H13A109.5
C10—C1—C2122.49 (14)C2—C13—H13B109.5
C6—C1—C2119.63 (14)H13A—C13—H13B109.5
C3—C2—C1118.59 (15)C2—C13—H13C109.5
C3—C2—C13120.90 (15)H13A—C13—H13C109.5
C1—C2—C13120.50 (15)H13B—C13—H13C109.5
C2—C3—C4123.22 (15)C8—C14—H14A109.5
C2—C3—H3118.4C8—C14—H14B109.5
C4—C3—H3118.4H14A—C14—H14B109.5
C5—C4—C3118.60 (15)C8—C14—H14C109.5
C5—C4—C17122.25 (15)H14A—C14—H14C109.5
C3—C4—C17119.12 (15)H14B—C14—H14C109.5
C4—C5—C6120.64 (15)O2—C15—C16121.70 (19)
C4—C5—C15121.03 (15)O2—C15—C5121.36 (18)
C6—C5—C15118.26 (14)C16—C15—C5116.89 (17)
C1—C6—C7118.13 (14)C15—C16—H16A109.5
C1—C6—C5119.28 (14)C15—C16—H16B109.5
C7—C6—C5122.56 (14)H16A—C16—H16B109.5
C8—C7—C6123.54 (15)C15—C16—H16C109.5
C8—C7—H7118.2H16A—C16—H16C109.5
C6—C7—H7118.2H16B—C16—H16C109.5
C7—C8—C9117.99 (15)C18—C17—C19111.40 (19)
C7—C8—C14118.41 (16)C18—C17—C4111.62 (17)
C9—C8—C14123.59 (16)C19—C17—C4112.53 (16)
C10—C9—C8119.22 (15)C18—C17—H17107.0
C10—C9—C11118.40 (16)C19—C17—H17107.0
C8—C9—C11122.37 (15)C4—C17—H17107.0
C9—C10—C1123.22 (15)C17—C18—H18A109.5
C9—C10—H10118.4C17—C18—H18B109.5
C1—C10—H10118.4H18A—C18—H18B109.5
O1—C11—C12118.70 (18)C17—C18—H18C109.5
O1—C11—C9121.54 (19)H18A—C18—H18C109.5
C12—C11—C9119.75 (17)H18B—C18—H18C109.5
C11—C12—H12A109.5C17—C19—H19A109.5
C11—C12—H12B109.5C17—C19—H19B109.5
H12A—C12—H12B109.5H19A—C19—H19B109.5
C11—C12—H12C109.5C17—C19—H19C109.5
H12A—C12—H12C109.5H19A—C19—H19C109.5
H12B—C12—H12C109.5H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O1i0.962.533.300 (3)137
C13—H13B···O2ii0.962.633.565 (3)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O1i0.962.5323.300 (3)137
C13—H13B···O2ii0.962.6253.565 (3)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H22O2
Mr282.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.8316 (14), 8.7542 (11), 17.959 (2)
β (°) 106.322 (5)
V3)1634.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.661, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
22755, 2882, 2283
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.03
No. of reflections2882
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDakir, M., Auhmani, A., Itto, M. Y. A., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  CrossRef CAS Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest. Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaunis, J., Jacquier, R., Lopez, H. & Viallefont, P. (1980). J. Chem. Commun. pp. 639–649.  Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Daran, J. C., Urrutigoïty, M. & Gouygou, M. (2010). Tetrahedron Asymmetry, 21, 1272–1277.  CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds