organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(4-Chloro­phen­yl)(2-phenyl-1H-indol-3-yl)meth­yl]cyclo­hexan-1-one

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, bDepartment of Chemistry, Seethalakshmi Achi College for Women, Pallathur, Karaikudi 630 107, India, and cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
*Correspondence e-mail: vasan692000@yahoo.co.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 11 April 2016; accepted 16 April 2016; online 22 April 2016)

In the title compound, C27H24ClNO, the indole ring is almost orthogonal to the chloro­phenyl ring and the mean plane of the cyclo­hexa­none ring, making a dihedral angles of 82.11 (6) and 89.96 (4)°, respectively. In the crystal, a strong N—H⋯O hydrogen bond links the mol­ecules, forming chains running along the c axis. The chains are linked by weak C—H⋯π inter­actions, forming layers parallel to the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole is a potent pharmacodynamic nucleus possessing properties such as anti-inflammatory, anti-cancer and anti­microbial activities (George et al., 2008[George, S., Parameswaran, M. K., Chakraborty, A. & Ravi, T. K. (2008). Acta Pharm. 58, 119-129.]; El-Sawy et al., 2009[El-Sawy, E. R., Mandour, A. H., Mahmoud, N. A. & Mustafa, M. (2009). Egypt. J. Chem. 52, 541-553.]; Mandour et al., 2007[Mandour, A. H., El- Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555-568.], 2010[Mandour, A. H., El-Sawy, E. R., Shaker, K. H. & Mustafa, M. A. (2010). Acta Pharm. 60, 73-88.]). Cyclo­hexa­none is an aliphatic cyclic ketone (Fatima, et al., 2014[Fatima, Z., Senthilkumar, G., Vadivel, A., Manikandan, H. & Velmurugan, D. (2014). Acta Cryst. E70, o509.]). Cyclo­hexa­none derivatives have potent pharmacological activity in the treatment of broad spectrum of medical conditions (Puetz et al., 2003[Puetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.]). The cyclo­hexa­none moiety constitutes an important structural feature in several anti-inflammatory, analgesic, local anaesthetic and anti­histaminic drugs (Rajveer et al., 2010[Rajveer, Ch., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Shreshtha, B. & Choudhury, P. K. (2010). Res. J. Pharm. Biol. Chem. Sci. 1, 99-107.]; Fatima et al., 2013[Fatima, Z., Senthilkumar, G., Vadivel, A., Manikandan, H. & Velmurugan, D. (2013). Acta Cryst. E69, o1121.]). Cyclo­hexa­none derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydro­phobic barrier of the corneum (Danyi et al., 1989[Danyi, Q., Takayama, K. & Nagai, T. (1989). Drug Des. Deliv. 4, 323-330.]; Rizwana Begum et al., 2012[Rizwana Begum, S., Hema, R., Pandiarajan, K., Balasubramanian, S. & Anitha, A. G. (2012). Acta Cryst. E68, o2213.]). Evaluation of bioactivities has shown cyclo­hexa­none-containing analogues to exhibit anti-tumour properties and a wider anti-tumour spectrum than the acetone and cyclo­penta­none-containing analogues (Chen et al., 2010[Chen, L., Zhang, L., Wang, Z., Wu, Y. & Liang, G. (2010). Acta Cryst. E66, o3309.]).

The indole ring in the title compound (Fig. 1[link]) is almost orthogonal to both the chloro­phenyl ring and the mean plane of the cyclo­hexa­none rings, making a dihedral angles of 82.11 (6) and 89.96 (4)°, respectively. Similarly the phenyl ring and cyclo­hexa­none mean plane are nearly orthogonal at a dihedral angle of 80.50 (8)°. The chloro­phenyl ring is inclined to the phenyl and cyclo­hexa­none rings by 43.57 (9) and 40.66 (9)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

In the crystal, a strong N—H⋯O hydrogen bond links the mol­ecules, forming chains running along the c axis (Fig. 2[link] and Table 1[link]). A weak C10—H10⋯π inter­action generates chains running along the a axis. Together, these inter­actions generate a layered structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.83 (2) 2.08 (2) 2.8525 (18) 156 (2)
C10—H10⋯Cgii 0.93 2.96 3.562 (2) 124
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.
[Figure 2]
Figure 2
Crystal structure of title compound, showing the formation of chains running along the c axis generated by N—H⋯O hydrogen bonds.

Synthesis and crystallization

A mixture of 2-(3-oxo-1,3-di­aryl­prop­yl)-1-cyclo­hexa­nones (1 mmol) and phenyl­hydrazine hydro­chloride (3 mmol) in THF (10 ml) was refluxed for 3–4 h. After completion of the reaction (TLC), the mixture was poured into ice-cold water and the solid separated was filtered off. The product was separated by flash column using petroleum ether and ethyl­acetate (10:1 v/v) as eluant. The title compound was isolated as colourless plates.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H24ClNO
Mr 413.95
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.2562 (2), 16.4818 (5), 18.0306 (6)
β (°) 95.149 (2)
V3) 2147.67 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.35 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.95, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 23418, 4798, 3331
Rint 0.034
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.04
No. of reflections 4798
No. of parameters 275
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.40
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

Indole is a potent pharmacodynamic nucleus possessing properties such as anti-inflammatory, anti-cancer and antimicrobial activities (George et al.,2008; El-Sawy et al., 2009; Mandour et al., 2007,2010). Cyclohexanone is an aliphatic cyclic ketone (Fatima, et al., 2014). Cyclohexanone derivatives have potent pharmacological activity in the treatment of broad spectrum of medical conditions (Puetz et al., 2003). The cyclohexanone moiety constitutes an important structural feature in several anti-inflammatory, analgesic, local anesthetic and antihistaminic drugs (Rajveer et al., 2010; Fatima et al., 2013). Cyclohexanone derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum (Danyi et al., 1989; Begum, et al., 2012). Evaluation of bioactivities show the cyclohexanone-containing analogues exhibited anti-tumour properties and a wider anti-tumour spectrum than the acetone and cyclopentanone-containing analogues (Chen, et al., 2010).

The indole ring is almost orthogonal to both chlorophenyl and cyclohexanone ring systems, making a dihedral angles 82.11 (6)° and 89.96 (4)° respectively. Similarly the phenyl ring and cyclohexanone are nearly orthogonal with dihedral angles of 80.50 (8)°. The chlorophenyl ring is inclined by 43.57 (9)° and 40.66 (9)° with phenyl and cyclohexanone rings respectively. In the structure, a strong N—H···O hydrogen bond links the symmetry equivalent molecules by forming one-dimensional chain running along c-axis.

A weak C10—H10···cg (-1+x, y, z), cg being the centroid of six-membered ring of indole system defined by C1—C6 having a H···cg distance of 2.96 Å and angle of 124°, which generates chain running along a-axis.

Experimental top

A mixture of 2-(3-oxo-1,3-diarylpropyl)-1-cyclohexanones (1 mmol) and phenylhydrazine hydrochloride (3 mmol) in THF (10 ml) was refluxed for 3–4 h. After completion of the reaction (TLC), the mixture was poured into ice-cold water and the solid separated was filtered off. The product was separated by flash column using petroleum ether and ethylacetate (10:1 v/v) as eluant. The title compound was isolated as colourless plates.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Indole is a potent pharmacodynamic nucleus possessing properties such as anti-inflammatory, anti-cancer and antimicrobial activities (George et al., 2008; El-Sawy et al., 2009; Mandour et al., 2007, 2010). Cyclohexanone is an aliphatic cyclic ketone (Fatima, et al., 2014). Cyclohexanone derivatives have potent pharmacological activity in the treatment of broad spectrum of medical conditions (Puetz et al., 2003). The cyclohexanone moiety constitutes an important structural feature in several anti-inflammatory, analgesic, local anaesthetic and antihistaminic drugs (Rajveer et al., 2010; Fatima et al., 2013). Cyclohexanone derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum (Danyi et al., 1989; Begum et al., 2012). Evaluation of bioactivities has shown cyclohexanone-containing analogues to exhibit anti-tumour properties and a wider anti-tumour spectrum than the acetone and cyclopentanone-containing analogues (Chen et al., 2010).

The indole ring in the title compound (Fig. 1) is almost orthogonal to both chlorophenyl and cyclohexanone rings, making a dihedral angles of 82.11 (6) and 89.96 (4)°, respectively. Similarly the phenyl ring and cyclohexanone are nearly orthogonal at a dihedral angle of 80.50 (8)°. The chlorophenyl ring is inclined to the phenyl and cyclohexanone rings by 43.57 (9) and 40.66 (9)°, respectively.

In the crystal, a strong N—H···O hydrogen bond links the molecules, forming chains running along the c axis (Fig. 2 and Table 1). A weak C10—H10···π interaction generates chains running along the a axis. Together, these interactions generate a layered structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal structure of title compound, showing the formation of chains running along the c axis generated by N—H···O hydrogen bonds.
2-[(4-Chlorophenyl)(2-phenyl-1H-indol-3-yl)methyl]cyclohexan-1-one top
Crystal data top
C27H24ClNOF(000) = 872
Mr = 413.95Dx = 1.280 Mg m3
Dm = 1.28 Mg m3
Dm measured by floatation method
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2562 (2) ÅCell parameters from 7435 reflections
b = 16.4818 (5) Åθ = 5.0–54.2°
c = 18.0306 (6) ŵ = 0.20 mm1
β = 95.149 (2)°T = 293 K
V = 2147.67 (11) Å3Plate, colourless
Z = 40.35 × 0.21 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3331 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
ω and φ scanθmax = 27.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.95, Tmax = 0.96k = 2021
23418 measured reflectionsl = 2323
4798 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.6834P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4798 reflectionsΔρmax = 0.33 e Å3
275 parametersΔρmin = 0.40 e Å3
Crystal data top
C27H24ClNOV = 2147.67 (11) Å3
Mr = 413.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2562 (2) ŵ = 0.20 mm1
b = 16.4818 (5) ÅT = 293 K
c = 18.0306 (6) Å0.35 × 0.21 × 0.16 mm
β = 95.149 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4798 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3331 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.034
23418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
4798 reflectionsΔρmin = 0.40 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.580 (3)0.7097 (12)0.2067 (12)0.055 (6)*
Cl11.35108 (9)0.93406 (4)0.15842 (4)0.0884 (2)
O10.58279 (17)0.75702 (7)0.18216 (6)0.0466 (3)
N10.6256 (2)0.69785 (9)0.16453 (8)0.0438 (4)
C10.7775 (2)0.65094 (10)0.14730 (9)0.0398 (4)
C20.8774 (3)0.60370 (11)0.19316 (10)0.0505 (5)
H20.84590.60130.24430.061*
C31.0239 (3)0.56090 (12)0.16037 (11)0.0579 (5)
H31.09300.52840.18970.069*
C41.0720 (3)0.56496 (12)0.08374 (11)0.0550 (5)
H41.17080.53420.06280.066*
C50.9763 (2)0.61330 (11)0.03885 (10)0.0458 (4)
H51.01110.61620.01200.055*
C60.8261 (2)0.65818 (10)0.07032 (8)0.0376 (4)
C70.6973 (2)0.71423 (10)0.04213 (8)0.0368 (4)
C80.5782 (2)0.73760 (10)0.10163 (8)0.0394 (4)
C90.4177 (2)0.79283 (11)0.10919 (9)0.0429 (4)
C100.2496 (3)0.76591 (13)0.14256 (11)0.0596 (5)
H100.23580.71150.15570.071*
C110.1022 (3)0.81797 (17)0.15668 (14)0.0749 (7)
H110.00990.79840.17870.090*
C120.1199 (3)0.89791 (17)0.13854 (14)0.0764 (7)
H120.02110.93330.14900.092*
C130.2848 (3)0.92597 (15)0.10471 (15)0.0778 (7)
H130.29740.98040.09180.093*
C140.4317 (3)0.87357 (13)0.08986 (13)0.0619 (5)
H140.54220.89310.06640.074*
C150.6874 (2)0.73783 (10)0.03812 (8)0.0365 (4)
H150.58480.77630.03930.044*
C160.8628 (2)0.78262 (10)0.06868 (8)0.0383 (4)
C170.9042 (3)0.85589 (14)0.03785 (13)0.0743 (7)
H170.82780.87540.00230.089*
C181.0548 (4)0.90128 (14)0.06438 (14)0.0794 (7)
H181.07920.95060.04210.095*
C191.1670 (3)0.87422 (12)0.12271 (11)0.0517 (5)
C201.1358 (3)0.80067 (13)0.15377 (12)0.0591 (5)
H201.21540.78100.19300.071*
C210.9837 (3)0.75567 (12)0.12616 (11)0.0527 (5)
H210.96290.70540.14740.063*
C220.6399 (2)0.66461 (10)0.08515 (8)0.0370 (4)
H220.74410.62660.08760.044*
C230.6033 (2)0.68732 (11)0.16372 (8)0.0386 (4)
C240.5736 (3)0.61723 (12)0.21343 (10)0.0563 (5)
H24A0.55510.63640.26310.068*
H24B0.68100.58190.21670.068*
C250.4033 (3)0.57094 (13)0.18092 (11)0.0625 (6)
H25A0.38760.52260.21030.075*
H25B0.29440.60460.18340.075*
C260.4211 (3)0.54718 (12)0.10116 (11)0.0574 (5)
H26A0.30640.52250.08070.069*
H26B0.51870.50710.09970.069*
C270.4647 (3)0.61950 (12)0.05341 (10)0.0518 (5)
H27A0.36070.65670.05020.062*
H27B0.48160.60090.00340.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0660 (4)0.0675 (4)0.1272 (6)0.0240 (3)0.0165 (4)0.0153 (4)
O10.0624 (8)0.0458 (7)0.0319 (6)0.0011 (6)0.0062 (5)0.0077 (5)
N10.0591 (9)0.0482 (9)0.0237 (7)0.0008 (7)0.0005 (6)0.0018 (6)
C10.0506 (10)0.0387 (9)0.0307 (8)0.0074 (8)0.0069 (7)0.0010 (7)
C20.0677 (12)0.0499 (11)0.0353 (9)0.0063 (9)0.0128 (8)0.0064 (8)
C30.0654 (13)0.0538 (12)0.0576 (12)0.0015 (10)0.0234 (10)0.0109 (10)
C40.0514 (11)0.0553 (12)0.0587 (12)0.0054 (9)0.0073 (9)0.0003 (9)
C50.0468 (10)0.0523 (11)0.0381 (9)0.0023 (8)0.0033 (7)0.0016 (8)
C60.0446 (9)0.0386 (9)0.0299 (8)0.0075 (7)0.0053 (7)0.0006 (7)
C70.0425 (9)0.0410 (9)0.0271 (8)0.0068 (7)0.0042 (6)0.0002 (7)
C80.0498 (10)0.0403 (9)0.0282 (8)0.0065 (7)0.0034 (7)0.0009 (7)
C90.0487 (10)0.0483 (11)0.0318 (8)0.0021 (8)0.0051 (7)0.0049 (7)
C100.0588 (12)0.0553 (12)0.0621 (13)0.0078 (10)0.0080 (10)0.0063 (10)
C110.0508 (13)0.0830 (18)0.0882 (17)0.0032 (12)0.0088 (11)0.0132 (14)
C120.0561 (14)0.0830 (19)0.0900 (18)0.0166 (12)0.0053 (12)0.0087 (14)
C130.0704 (16)0.0594 (14)0.1039 (19)0.0119 (12)0.0094 (14)0.0124 (13)
C140.0535 (11)0.0577 (13)0.0736 (14)0.0011 (10)0.0014 (10)0.0126 (11)
C150.0424 (9)0.0398 (9)0.0273 (8)0.0034 (7)0.0027 (6)0.0036 (6)
C160.0460 (9)0.0407 (9)0.0285 (8)0.0052 (7)0.0049 (7)0.0046 (7)
C170.0902 (16)0.0610 (14)0.0652 (14)0.0272 (12)0.0300 (12)0.0218 (11)
C180.0933 (17)0.0548 (14)0.0851 (17)0.0304 (13)0.0195 (14)0.0184 (12)
C190.0461 (10)0.0468 (11)0.0617 (12)0.0102 (8)0.0015 (9)0.0111 (9)
C200.0454 (11)0.0623 (13)0.0670 (13)0.0062 (9)0.0102 (9)0.0063 (10)
C210.0463 (10)0.0480 (11)0.0619 (12)0.0083 (8)0.0051 (9)0.0099 (9)
C220.0422 (9)0.0410 (9)0.0284 (8)0.0047 (7)0.0065 (6)0.0045 (7)
C230.0398 (9)0.0467 (10)0.0290 (8)0.0042 (7)0.0016 (6)0.0044 (7)
C240.0831 (14)0.0526 (12)0.0344 (9)0.0065 (10)0.0122 (9)0.0017 (8)
C250.0803 (15)0.0550 (13)0.0557 (12)0.0161 (11)0.0247 (11)0.0027 (10)
C260.0618 (12)0.0548 (12)0.0564 (12)0.0208 (10)0.0100 (9)0.0078 (9)
C270.0586 (11)0.0599 (12)0.0369 (9)0.0214 (9)0.0039 (8)0.0082 (8)
Geometric parameters (Å, º) top
Cl1—C191.7367 (18)C14—H140.9300
O1—C231.209 (2)C15—C161.531 (2)
N1—C11.359 (2)C15—C221.532 (2)
N1—C81.380 (2)C15—H150.9800
N1—H10.82 (2)C16—C211.371 (2)
C1—C21.387 (2)C16—C171.374 (3)
C1—C61.406 (2)C17—C181.374 (3)
C2—C31.365 (3)C17—H170.9300
C2—H20.9300C18—C191.347 (3)
C3—C41.396 (3)C18—H180.9300
C3—H30.9300C19—C201.363 (3)
C4—C51.368 (3)C20—C211.384 (3)
C4—H40.9300C20—H200.9300
C5—C61.395 (2)C21—H210.9300
C5—H50.9300C22—C231.511 (2)
C6—C71.439 (2)C22—C271.538 (2)
C7—C81.371 (2)C22—H220.9800
C7—C151.506 (2)C23—C241.490 (2)
C8—C91.475 (2)C24—C251.524 (3)
C9—C141.377 (3)C24—H24A0.9700
C9—C101.384 (3)C24—H24B0.9700
C10—C111.377 (3)C25—C261.507 (3)
C10—H100.9300C25—H25A0.9700
C11—C121.361 (4)C25—H25B0.9700
C11—H110.9300C26—C271.520 (3)
C12—C131.374 (3)C26—H26A0.9700
C12—H120.9300C26—H26B0.9700
C13—C141.379 (3)C27—H27A0.9700
C13—H130.9300C27—H27B0.9700
C1—N1—C8109.83 (14)C21—C16—C17116.25 (17)
C1—N1—H1126.5 (14)C21—C16—C15124.84 (15)
C8—N1—H1122.5 (14)C17—C16—C15118.91 (16)
N1—C1—C2129.78 (16)C16—C17—C18122.3 (2)
N1—C1—C6107.69 (14)C16—C17—H17118.9
C2—C1—C6122.53 (17)C18—C17—H17118.9
C3—C2—C1117.42 (17)C19—C18—C17119.8 (2)
C3—C2—H2121.3C19—C18—H18120.1
C1—C2—H2121.3C17—C18—H18120.1
C2—C3—C4121.29 (17)C18—C19—C20120.27 (18)
C2—C3—H3119.4C18—C19—Cl1119.48 (16)
C4—C3—H3119.4C20—C19—Cl1120.24 (16)
C5—C4—C3121.23 (19)C19—C20—C21119.04 (19)
C5—C4—H4119.4C19—C20—H20120.5
C3—C4—H4119.4C21—C20—H20120.5
C4—C5—C6119.18 (17)C16—C21—C20122.27 (18)
C4—C5—H5120.4C16—C21—H21118.9
C6—C5—H5120.4C20—C21—H21118.9
C5—C6—C1118.30 (15)C23—C22—C15113.00 (13)
C5—C6—C7134.86 (15)C23—C22—C27105.06 (13)
C1—C6—C7106.84 (14)C15—C22—C27113.23 (14)
C8—C7—C6106.73 (14)C23—C22—H22108.5
C8—C7—C15126.73 (15)C15—C22—H22108.5
C6—C7—C15126.41 (14)C27—C22—H22108.5
C7—C8—N1108.87 (15)O1—C23—C24122.91 (15)
C7—C8—C9133.06 (15)O1—C23—C22121.97 (15)
N1—C8—C9118.06 (14)C24—C23—C22114.76 (15)
C14—C9—C10117.52 (18)C23—C24—C25108.23 (16)
C14—C9—C8122.23 (16)C23—C24—H24A110.1
C10—C9—C8120.02 (17)C25—C24—H24A110.1
C11—C10—C9121.3 (2)C23—C24—H24B110.1
C11—C10—H10119.3C25—C24—H24B110.1
C9—C10—H10119.3H24A—C24—H24B108.4
C12—C11—C10120.3 (2)C26—C25—C24111.16 (15)
C12—C11—H11119.9C26—C25—H25A109.4
C10—C11—H11119.9C24—C25—H25A109.4
C11—C12—C13119.5 (2)C26—C25—H25B109.4
C11—C12—H12120.3C24—C25—H25B109.4
C13—C12—H12120.3H25A—C25—H25B108.0
C12—C13—C14120.2 (2)C25—C26—C27112.13 (16)
C12—C13—H13119.9C25—C26—H26A109.2
C14—C13—H13119.9C27—C26—H26A109.2
C9—C14—C13121.2 (2)C25—C26—H26B109.2
C9—C14—H14119.4C27—C26—H26B109.2
C13—C14—H14119.4H26A—C26—H26B107.9
C7—C15—C16111.14 (12)C26—C27—C22112.04 (15)
C7—C15—C22111.15 (13)C26—C27—H27A109.2
C16—C15—C22113.70 (13)C22—C27—H27A109.2
C7—C15—H15106.8C26—C27—H27B109.2
C16—C15—H15106.8C22—C27—H27B109.2
C22—C15—H15106.8H27A—C27—H27B107.9
C8—N1—C1—C2176.83 (17)C12—C13—C14—C90.8 (4)
C8—N1—C1—C62.17 (19)C8—C7—C15—C16120.19 (18)
N1—C1—C2—C3178.67 (18)C6—C7—C15—C1664.5 (2)
C6—C1—C2—C32.5 (3)C8—C7—C15—C22112.10 (18)
C1—C2—C3—C40.4 (3)C6—C7—C15—C2263.2 (2)
C2—C3—C4—C51.4 (3)C7—C15—C16—C21117.57 (19)
C3—C4—C5—C61.1 (3)C22—C15—C16—C218.7 (2)
C4—C5—C6—C10.8 (2)C7—C15—C16—C1763.3 (2)
C4—C5—C6—C7179.46 (18)C22—C15—C16—C17170.40 (18)
N1—C1—C6—C5178.23 (15)C21—C16—C17—C182.1 (4)
C2—C1—C6—C52.7 (2)C15—C16—C17—C18177.1 (2)
N1—C1—C6—C71.56 (18)C16—C17—C18—C190.2 (4)
C2—C1—C6—C7177.53 (15)C17—C18—C19—C202.4 (4)
C5—C6—C7—C8179.35 (18)C17—C18—C19—Cl1177.2 (2)
C1—C6—C7—C80.40 (18)C18—C19—C20—C212.2 (3)
C5—C6—C7—C153.3 (3)Cl1—C19—C20—C21177.40 (16)
C1—C6—C7—C15176.45 (15)C17—C16—C21—C202.3 (3)
C6—C7—C8—N10.90 (18)C15—C16—C21—C20176.89 (17)
C15—C7—C8—N1175.13 (15)C19—C20—C21—C160.2 (3)
C6—C7—C8—C9179.73 (17)C7—C15—C22—C23172.32 (13)
C15—C7—C8—C93.7 (3)C16—C15—C22—C2361.37 (18)
C1—N1—C8—C71.94 (19)C7—C15—C22—C2753.01 (19)
C1—N1—C8—C9179.03 (14)C16—C15—C22—C27179.32 (14)
C7—C8—C9—C1459.1 (3)C15—C22—C23—O112.0 (2)
N1—C8—C9—C14122.20 (19)C27—C22—C23—O1111.93 (18)
C7—C8—C9—C10126.7 (2)C15—C22—C23—C24174.64 (15)
N1—C8—C9—C1052.1 (2)C27—C22—C23—C2461.44 (19)
C14—C9—C10—C110.7 (3)O1—C23—C24—C25111.76 (19)
C8—C9—C10—C11173.87 (19)C22—C23—C24—C2561.5 (2)
C9—C10—C11—C120.6 (4)C23—C24—C25—C2654.5 (2)
C10—C11—C12—C131.3 (4)C24—C25—C26—C2753.6 (2)
C11—C12—C13—C140.6 (4)C25—C26—C27—C2255.8 (2)
C10—C9—C14—C131.4 (3)C23—C22—C27—C2656.3 (2)
C8—C9—C14—C13173.03 (19)C15—C22—C27—C26179.95 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (2)2.08 (2)2.8525 (18)156 (2)
C10—H10···Cgii0.932.963.562 (2)124
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (2)2.08 (2)2.8525 (18)156 (2)
C10—H10···Cgii0.932.963.562 (2)124
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H24ClNO
Mr413.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2562 (2), 16.4818 (5), 18.0306 (6)
β (°) 95.149 (2)
V3)2147.67 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.21 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.95, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
23418, 4798, 3331
Rint0.034
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.04
No. of reflections4798
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Dr Babu Varghese, Scientist, Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the X-ray intensity data collection.

References

First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Zhang, L., Wang, Z., Wu, Y. & Liang, G. (2010). Acta Cryst. E66, o3309.  CSD CrossRef IUCr Journals Google Scholar
First citationDanyi, Q., Takayama, K. & Nagai, T. (1989). Drug Des. Deliv. 4, 323–330.  CAS PubMed Google Scholar
First citationEl-Sawy, E. R., Mandour, A. H., Mahmoud, N. A. & Mustafa, M. (2009). Egypt. J. Chem. 52, 541–553.  Google Scholar
First citationFatima, Z., Senthilkumar, G., Vadivel, A., Manikandan, H. & Velmurugan, D. (2013). Acta Cryst. E69, o1121.  CSD CrossRef IUCr Journals Google Scholar
First citationFatima, Z., Senthilkumar, G., Vadivel, A., Manikandan, H. & Velmurugan, D. (2014). Acta Cryst. E70, o509.  CSD CrossRef IUCr Journals Google Scholar
First citationGeorge, S., Parameswaran, M. K., Chakraborty, A. & Ravi, T. K. (2008). Acta Pharm. 58, 119–129.  CrossRef PubMed CAS Google Scholar
First citationMandour, A. H., El- Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555–568.  CAS Google Scholar
First citationMandour, A. H., El-Sawy, E. R., Shaker, K. H. & Mustafa, M. A. (2010). Acta Pharm. 60, 73–88.  CrossRef CAS PubMed Google Scholar
First citationPuetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.  Google Scholar
First citationRajveer, Ch., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Shreshtha, B. & Choudhury, P. K. (2010). Res. J. Pharm. Biol. Chem. Sci. 1, 99–107.  CAS Google Scholar
First citationRizwana Begum, S., Hema, R., Pandiarajan, K., Balasubramanian, S. & Anitha, A. G. (2012). Acta Cryst. E68, o2213.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds