metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1173-m1174

Bis(2,4,6-tri­amino-1,3,5-triazin-1-ium) bis­­(4-hy­droxy­pyridine-2,6-carboxyl­ato)­cuprate(II) hexa­hydrate

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, bDepartment of Chemistry, Faculty of Science, Payame Noor University, Qom Center, Qom, Iran, cFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, 15614 Tehran, Iran, and dDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 5 August 2008; accepted 8 August 2008; online 16 August 2008)

In the title compound, (C3H7N6)2[Cu(C7H3NO5)2]·6H2O, the coordination geometry of the CuII atom can be described as distorted octa­hedral. The equatorial plane is defined by four O atoms from two 4-hydroxy­pyridine-2,6-dicarboxyl­ate ligands. The axial positions are occupied by the N atoms of the same ligands. There is an extensive three-dimensional hydrogen-bond network reinforcing crystal cohesion.

Related literature

For related literature, see: Aghabozorg, Motyeian, Attar Gharamaleki et al. (2008[Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144-m145.]); Aghabozorg, Motyeian, Soleimannejad et al. (2008[Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m252-m253.]); Aghabozorg, Saadaty et al. (2008[Aghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466-m467.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H7N6)2[Cu(C7H3NO5)2]·6H2O

  • Mr = 788.14

  • Monoclinic, P 21 /c

  • a = 11.2894 (3) Å

  • b = 37.7699 (12) Å

  • c = 7.3414 (2) Å

  • β = 94.016 (2)°

  • V = 3122.68 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 (2) K

  • 0.28 × 0.20 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.714, Tmax = 0.919

  • 22082 measured reflections

  • 7390 independent reflections

  • 5112 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.02

  • 7390 reflections

  • 508 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O7i 0.74 (3) 1.84 (3) 2.573 (3) 169 (4)
O1B—H1B⋯O6ii 0.76 (4) 1.83 (4) 2.579 (3) 173 (4)
N5A—H5A⋯O10ii 0.77 (2) 2.06 (3) 2.787 (3) 159 (3)
N6A—H7⋯O4Biii 0.86 2.13 2.980 (3) 173
N6A—H8⋯O11 0.86 2.13 2.962 (4) 162
N7A—H11⋯O1Biii 0.86 2.25 3.106 (3) 172
N7A—H12⋯O9iv 0.86 2.11 2.910 (4) 155
N8A—H9⋯N3Av 0.86 2.11 2.973 (4) 177
N8A—H10⋯O10ii 0.86 2.25 2.986 (4) 144
N8A—H10⋯O11v 0.86 2.56 3.202 (4) 133
N5B—H5B⋯O2Avi 0.78 (2) 1.96 (3) 2.698 (3) 157 (3)
N6B—H5⋯O1Ai 0.86 2.28 3.131 (3) 170
N6B—H6⋯O9 0.86 2.38 2.905 (3) 120
N7B—H1⋯O5Bvii 0.86 2.24 3.021 (3) 151
N7B—H2⋯O2Avi 0.86 2.11 2.852 (3) 144
N8B—H3⋯O4Ai 0.86 2.10 2.930 (3) 163
N8B—H4⋯O8vi 0.86 2.01 2.857 (3) 169
O6—H61⋯O5A 0.83 (2) 1.87 (2) 2.706 (3) 177 (4)
O6—H62⋯O2Bviii 0.81 (2) 1.97 (2) 2.756 (3) 163 (4)
O7—H71⋯O3Bviii 0.82 (2) 1.94 (2) 2.741 (3) 163 (4)
O7—H72⋯O5B 0.82 (2) 1.95 (2) 2.766 (3) 171 (4)
O8—H81⋯O4Biii 0.86 (2) 1.86 (2) 2.714 (3) 173 (4)
O8—H82⋯O3A 0.83 (2) 1.90 (2) 2.701 (3) 162 (4)
O9—H91⋯O3B 0.88 (2) 1.97 (2) 2.839 (3) 172 (4)
O9—H92⋯O4Aiii 0.88 (2) 2.13 (2) 3.005 (3) 176 (4)
O10—H101⋯O8ix 0.84 (4) 2.24 (3) 3.030 (4) 157 (5)
O10—H102⋯O4A 0.89 (4) 2.39 (5) 2.695 (3) 101 (4)
O11—H111⋯O10x 0.85 (2) 2.44 (4) 3.196 (5) 149 (7)
O11—H112⋯N4Bx 0.83 (6) 2.53 (7) 2.996 (4) 116 (6)
O11—H112⋯O8 0.83 (6) 2.60 (8) 3.090 (5) 118 (7)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) x, y, z-1; (iv) -x+1, -y+2, -z; (v) -x, -y+2, -z+1; (vi) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) x+1, y, z; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Following our research on the synthesis of proton transfer compounds that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg, Motyeian, Attar Gharamaleki et al., 2008; Aghabozorg, Motyeian, Soleimannejad et al., 2008; Aghabozorg, Saadaty et al., 2008), we have obtained the title compound dimelaminium bis(4-hydroxypyridine-2,6-carboxylato)cuprate(II) hexahydrated. 4-hydroxypyridine-2,6-carboxylic acid (hypydcH2) was chosen as a proton donor and melamine (tata) as the proton acceptor.

The asymmetric unit of (I) consists of two melaminium (tataH) residues protonated at one ring N atom, two (hypydc) residues coordinating a CuII ion and six water molecules (Fig. 1). The melaminium cations are essentially planar with the weighted average absolute torsion angle equal to 0.67 (23) for ring A and 1.20 (33)° for ring B. Both rings exhibit a significant distortion from the ideal hexagonal form. The internal C—N—C angle of the protonated N atom (N5A, N5B) is significantly larger than the other two ring C—N—C angles (Table 1). The angle between the least-squares plane of the two independent cations is 87.97 (12)°. The anions also assemble perpendicularly to each other. The angle between the mean planes of the two independent pyridil rings is 89.51 (12)°. Thus the molecules form a square grid with channels along the b axis (Fig. 2). The CuII ion is coordinated octahedrally by two ligands of (hypydc). The N atoms of the two independent anions occupy the axial positions while four oxygen atoms form the equatorial plane. There is an extensive network of hydrogen bonds proportionated by the large amount of water molecules. All the water molecules share their hydrogen atoms with another strong acceptor (N,O). The (hypydc) anions have similar H-bonds, but the two independent melaminium cations have different roles in the web of H-bonds. While B molecules only establish H-bonds to neighbouring water or (hypydc) molecules, the A molecules are also joined in dimers (Fig.3, Table 2).

Related literature top

For related literature, see: Aghabozorg, Motyeian, Attar Gharamaleki et al. (2008); Aghabozorg, Motyeian, Soleimannejad et al. (2008); Aghabozorg, Saadaty et al. (2008).

Experimental top

The proton transfer compound, (tata)2(hypydc), was prepared by the reaction of 4-hydroxypyridinee-2,6-dicarboxylic acid, hypydcH2, with melamine, (tata). The reaction between Cu(NO3)2.6H2O (143 mg, 0.5 mmol) in water (20 ml) and proton transfer compound, (phenH)2(hypydc) (253 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio was carried out and a blue crystalline compound was obtained by the slow evaporation of the solvent at room temperature.

Refinement top

All H-atoms could be located in difference Fourier maps. The H atoms of water molecules were refined with an O—H distance restraint of 0.85 (2) Å and Uiso(H) = 1.5Ueq(O). Short contacts between the H atoms of the water O10 and neighbouring H atoms are observed at the final refinement, an indication that these H atoms are probably disordered. The coordinates of the H atoms of the hydroxyl groups were freely refined with Uiso(H) = 1.5Ueq(O), the H atoms bonded to the N atoms of the melaminium rings were restrained to have equal N—H distances and Uiso(H) = 1.2Ueq(N). The remaining H atoms were placed at calculated positions and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(N,C)

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Water molecules were excluded for clarity.
[Figure 3] Fig. 3. A part of the extensive three-dimensional H-bond network. H-bonds are depicted as dashed lines.
Bis(2,4,6-triamino-1,3,5-triazin-1-ium) bis(4-hydroxypyridine-2,6-carboxylato)cuprate(II) hexahydrate top
Crystal data top
(C3H7N6)2[Cu(C7H3NO5)2]·6H2OF(000) = 1628
Mr = 788.14Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.2894 (3) ÅCell parameters from 4074 reflections
b = 37.7699 (12) Åθ = 2.4–24.5°
c = 7.3414 (2) ŵ = 0.80 mm1
β = 94.016 (2)°T = 293 K
V = 3122.68 (15) Å3Prism, green
Z = 40.28 × 0.20 × 0.10 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
7390 independent reflections
Radiation source: fine-focus sealed tube5112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1514
Tmin = 0.714, Tmax = 0.919k = 5050
22082 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.0192P]
where P = (Fo2 + 2Fc2)/3
7390 reflections(Δ/σ)max = 0.014
508 parametersΔρmax = 0.44 e Å3
13 restraintsΔρmin = 0.46 e Å3
Crystal data top
(C3H7N6)2[Cu(C7H3NO5)2]·6H2OV = 3122.68 (15) Å3
Mr = 788.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2894 (3) ŵ = 0.80 mm1
b = 37.7699 (12) ÅT = 293 K
c = 7.3414 (2) Å0.28 × 0.20 × 0.10 mm
β = 94.016 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
7390 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
5112 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.919Rint = 0.054
22082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04413 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
7390 reflectionsΔρmin = 0.46 e Å3
508 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43767 (3)0.864573 (8)0.43487 (5)0.02540 (10)
O1A0.62393 (18)0.71521 (5)0.5449 (3)0.0339 (5)
H1A0.584 (3)0.7012 (9)0.503 (5)0.051*
O1B0.31432 (19)1.01748 (5)0.5212 (3)0.0363 (5)
H1B0.335 (3)1.0291 (9)0.446 (5)0.054*
O2A0.26377 (16)0.77504 (5)0.2033 (3)0.0382 (5)
O2B0.5124 (2)0.93825 (6)0.0457 (3)0.0532 (7)
O3A0.29856 (16)0.83148 (5)0.2762 (3)0.0321 (4)
O3B0.50694 (17)0.88676 (5)0.1949 (3)0.0339 (5)
O4A0.75786 (16)0.83882 (5)0.7359 (3)0.0356 (5)
O4B0.2249 (2)0.89919 (5)0.8309 (3)0.0524 (7)
O5A0.61471 (17)0.87161 (5)0.5943 (3)0.0368 (5)
O5B0.32894 (17)0.86291 (5)0.6639 (3)0.0313 (4)
N1A0.50099 (18)0.81629 (5)0.4577 (3)0.0218 (4)
N1B0.38376 (18)0.91274 (5)0.4434 (3)0.0235 (5)
C1A0.6033 (2)0.80997 (6)0.5575 (4)0.0218 (5)
C1B0.3243 (2)0.92336 (7)0.5850 (4)0.0255 (6)
C2A0.6461 (2)0.77631 (6)0.5867 (4)0.0245 (6)
H2A0.71770.77260.65480.029*
C2B0.2994 (2)0.95844 (7)0.6138 (4)0.0299 (6)
H2B0.25800.96550.71290.036*
C3A0.5813 (2)0.74770 (6)0.5132 (4)0.0239 (5)
C3B0.3381 (2)0.98330 (6)0.4897 (4)0.0272 (6)
C4A0.4744 (2)0.75443 (7)0.4131 (4)0.0248 (6)
H4A0.42830.73580.36460.030*
C4B0.3979 (2)0.97189 (7)0.3412 (4)0.0272 (6)
H4B0.42260.98800.25580.033*
C5A0.4376 (2)0.78907 (6)0.3866 (4)0.0222 (5)
C5B0.4196 (2)0.93624 (7)0.3236 (4)0.0249 (6)
C6A0.3237 (2)0.79909 (7)0.2795 (4)0.0257 (6)
C6B0.4848 (2)0.91968 (7)0.1720 (4)0.0303 (6)
C7A0.6650 (2)0.84270 (6)0.6363 (4)0.0250 (6)
C7B0.2893 (2)0.89329 (7)0.7058 (4)0.0305 (6)
N3A0.0763 (2)0.99122 (6)0.2789 (3)0.0325 (5)
N4A0.1682 (2)0.99282 (6)0.0069 (3)0.0342 (6)
N5A0.1108 (2)1.04478 (6)0.1332 (4)0.0341 (6)
H5A0.099 (3)1.0648 (7)0.133 (5)0.041*
N6A0.1337 (2)0.94103 (6)0.1355 (4)0.0390 (6)
H70.16470.93040.04670.047*
H80.10790.92890.22370.047*
N7A0.1989 (2)1.04682 (7)0.1378 (4)0.0460 (7)
H110.22941.03670.22840.055*
H120.19341.06950.13440.055*
N8A0.0229 (2)1.04431 (7)0.4041 (4)0.0476 (7)
H90.00451.03340.49490.057*
H100.01951.06700.39830.057*
C8A0.1257 (2)0.97605 (7)0.1365 (4)0.0306 (6)
C9A0.1607 (2)1.02764 (7)0.0048 (4)0.0342 (7)
C10A0.0699 (2)1.02625 (7)0.2739 (4)0.0336 (7)
N3B0.88638 (18)0.76048 (6)0.3504 (3)0.0289 (5)
N4B1.0116 (2)0.80888 (6)0.4584 (3)0.0321 (5)
N5B1.06806 (18)0.75026 (6)0.5151 (3)0.0266 (5)
H5B1.114 (2)0.7379 (7)0.567 (4)0.032*
N6B0.8337 (2)0.81741 (6)0.2915 (4)0.0395 (6)
H50.77030.80940.23380.047*
H60.84580.83990.29900.047*
N7B1.1849 (2)0.79554 (6)0.6287 (3)0.0347 (6)
H11.20060.81770.64420.042*
H21.23290.77980.67580.042*
N8B0.95084 (19)0.70392 (6)0.4094 (3)0.0330 (6)
H30.88790.69570.35180.040*
H41.00360.68970.45770.040*
C8B0.9664 (2)0.73824 (7)0.4237 (4)0.0255 (6)
C9B1.0871 (2)0.78572 (7)0.5325 (4)0.0262 (6)
C10B0.9134 (2)0.79486 (7)0.3697 (4)0.0286 (6)
O60.6260 (2)0.93858 (5)0.7253 (3)0.0433 (6)
H610.620 (3)0.9180 (6)0.684 (5)0.065*
H620.580 (3)0.9381 (10)0.805 (4)0.065*
O70.4746 (2)0.83354 (6)0.9426 (3)0.0472 (6)
H710.469 (3)0.8491 (8)1.020 (4)0.071*
H720.429 (3)0.8401 (10)0.857 (4)0.071*
O80.1197 (2)0.84896 (6)0.0289 (4)0.0508 (6)
H810.150 (3)0.8641 (9)0.041 (5)0.076*
H820.168 (3)0.8391 (10)0.104 (5)0.076*
O90.7422 (2)0.87866 (6)0.0878 (4)0.0527 (6)
H910.672 (2)0.8828 (11)0.127 (6)0.079*
H920.750 (4)0.8675 (10)0.015 (4)0.079*
O100.9382 (2)0.88564 (6)0.7704 (5)0.0662 (8)
H1010.984 (4)0.8704 (10)0.821 (6)0.099*
H1020.894 (4)0.8820 (13)0.864 (5)0.099*
O110.0445 (5)0.88589 (8)0.3782 (7)0.1234 (17)
H1110.030 (7)0.878 (2)0.481 (5)0.185*
H1120.088 (6)0.8685 (13)0.362 (12)0.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02778 (17)0.01879 (16)0.0296 (2)0.00051 (12)0.00170 (13)0.00093 (13)
O1A0.0396 (12)0.0164 (9)0.0439 (13)0.0007 (8)0.0101 (9)0.0015 (8)
O1B0.0498 (12)0.0172 (10)0.0435 (14)0.0027 (8)0.0149 (10)0.0008 (8)
O2A0.0343 (11)0.0276 (10)0.0501 (14)0.0027 (8)0.0156 (10)0.0076 (9)
O2B0.0761 (16)0.0373 (12)0.0501 (16)0.0082 (11)0.0337 (13)0.0108 (11)
O3A0.0336 (10)0.0225 (9)0.0390 (13)0.0026 (8)0.0065 (9)0.0010 (8)
O3B0.0428 (11)0.0214 (10)0.0382 (13)0.0037 (8)0.0069 (10)0.0046 (8)
O4A0.0291 (10)0.0250 (10)0.0502 (14)0.0024 (8)0.0150 (9)0.0037 (9)
O4B0.0794 (16)0.0281 (11)0.0549 (16)0.0079 (10)0.0410 (14)0.0079 (10)
O5A0.0377 (11)0.0191 (9)0.0518 (14)0.0035 (8)0.0100 (10)0.0060 (9)
O5B0.0417 (11)0.0202 (9)0.0323 (12)0.0045 (8)0.0037 (9)0.0014 (8)
N1A0.0245 (11)0.0182 (10)0.0227 (12)0.0002 (8)0.0017 (9)0.0011 (8)
N1B0.0254 (11)0.0198 (10)0.0254 (13)0.0028 (8)0.0027 (9)0.0027 (9)
C1A0.0229 (12)0.0201 (12)0.0224 (15)0.0000 (9)0.0015 (10)0.0030 (10)
C1B0.0246 (12)0.0234 (13)0.0287 (16)0.0009 (10)0.0038 (11)0.0015 (11)
C2A0.0220 (12)0.0212 (12)0.0302 (16)0.0006 (9)0.0000 (11)0.0023 (11)
C2B0.0301 (14)0.0250 (13)0.0351 (17)0.0031 (11)0.0067 (12)0.0001 (12)
C3A0.0292 (13)0.0183 (12)0.0245 (15)0.0009 (10)0.0030 (11)0.0001 (10)
C3B0.0262 (13)0.0193 (12)0.0360 (17)0.0021 (10)0.0019 (12)0.0022 (11)
C4A0.0262 (13)0.0190 (12)0.0289 (16)0.0027 (10)0.0002 (11)0.0036 (10)
C4B0.0276 (13)0.0224 (13)0.0318 (17)0.0022 (10)0.0037 (12)0.0043 (11)
C5A0.0229 (12)0.0206 (12)0.0232 (15)0.0019 (9)0.0012 (11)0.0022 (10)
C5B0.0245 (13)0.0226 (13)0.0275 (16)0.0005 (10)0.0017 (11)0.0003 (11)
C6A0.0271 (13)0.0246 (13)0.0253 (16)0.0013 (10)0.0012 (11)0.0010 (11)
C6B0.0327 (14)0.0274 (14)0.0311 (17)0.0013 (11)0.0051 (12)0.0003 (12)
C7A0.0260 (13)0.0176 (12)0.0314 (16)0.0025 (10)0.0029 (11)0.0035 (10)
C7B0.0362 (15)0.0222 (13)0.0335 (18)0.0020 (11)0.0044 (13)0.0031 (11)
N3A0.0371 (13)0.0240 (12)0.0367 (15)0.0024 (10)0.0031 (11)0.0027 (10)
N4A0.0379 (13)0.0278 (12)0.0371 (16)0.0018 (10)0.0047 (11)0.0040 (10)
N5A0.0375 (13)0.0211 (11)0.0445 (16)0.0004 (10)0.0073 (12)0.0027 (11)
N6A0.0495 (15)0.0254 (12)0.0430 (17)0.0028 (10)0.0098 (13)0.0018 (11)
N7A0.0574 (17)0.0341 (14)0.0485 (18)0.0038 (12)0.0171 (14)0.0009 (13)
N8A0.0653 (18)0.0277 (13)0.0522 (19)0.0046 (12)0.0208 (15)0.0060 (12)
C8A0.0267 (14)0.0267 (14)0.0375 (18)0.0016 (11)0.0036 (12)0.0017 (12)
C9A0.0279 (14)0.0334 (15)0.0410 (19)0.0029 (11)0.0008 (13)0.0005 (13)
C10A0.0313 (14)0.0299 (15)0.0396 (19)0.0003 (11)0.0022 (13)0.0051 (13)
N3B0.0258 (11)0.0269 (12)0.0334 (14)0.0040 (9)0.0026 (10)0.0041 (10)
N4B0.0325 (12)0.0230 (11)0.0409 (15)0.0012 (9)0.0030 (11)0.0018 (10)
N5B0.0228 (11)0.0196 (11)0.0364 (15)0.0029 (8)0.0044 (10)0.0044 (9)
N6B0.0369 (13)0.0314 (13)0.0493 (17)0.0109 (10)0.0036 (12)0.0092 (12)
N7B0.0344 (13)0.0228 (12)0.0458 (17)0.0043 (10)0.0054 (11)0.0004 (10)
N8B0.0282 (12)0.0222 (11)0.0469 (17)0.0009 (9)0.0087 (11)0.0000 (10)
C8B0.0223 (12)0.0265 (14)0.0280 (16)0.0016 (10)0.0032 (11)0.0007 (11)
C9B0.0260 (13)0.0231 (13)0.0296 (16)0.0020 (10)0.0036 (11)0.0012 (11)
C10B0.0296 (14)0.0273 (14)0.0293 (16)0.0039 (11)0.0041 (12)0.0043 (11)
O60.0679 (16)0.0225 (10)0.0415 (15)0.0086 (10)0.0179 (11)0.0008 (10)
O70.0685 (16)0.0315 (12)0.0393 (15)0.0207 (11)0.0129 (12)0.0065 (10)
O80.0402 (13)0.0409 (13)0.0688 (19)0.0105 (10)0.0137 (12)0.0193 (12)
O90.0477 (14)0.0393 (13)0.071 (2)0.0071 (11)0.0057 (13)0.0026 (12)
O100.0493 (16)0.0298 (13)0.119 (3)0.0038 (11)0.0005 (16)0.0053 (14)
O110.201 (5)0.0406 (18)0.139 (4)0.011 (2)0.086 (3)0.004 (2)
Geometric parameters (Å, º) top
Cu1—N1B1.921 (2)N4A—C8A1.346 (4)
Cu1—N1A1.962 (2)N5A—C10A1.355 (4)
Cu1—O3B2.147 (2)N5A—C9A1.357 (4)
Cu1—O5B2.1508 (19)N5A—H5A0.77 (2)
Cu1—O5A2.260 (2)N6A—C8A1.326 (3)
Cu1—O3A2.2648 (19)N6A—H70.8600
O1A—C3A1.333 (3)N6A—H80.8600
O1A—H1A0.74 (3)N7A—C9A1.313 (4)
O1B—C3B1.342 (3)N7A—H110.8600
O1B—H1B0.76 (4)N7A—H120.8600
O2A—C6A1.242 (3)N8A—C10A1.316 (4)
O2B—C6B1.221 (3)N8A—H90.8600
O3A—C6A1.256 (3)N8A—H100.8600
O3B—C6B1.277 (3)N3B—C8B1.321 (3)
O4A—C7A1.244 (3)N3B—C10B1.339 (3)
O4B—C7B1.231 (3)N4B—C9B1.312 (3)
O5A—C7A1.259 (3)N4B—C10B1.353 (4)
O5B—C7B1.277 (3)N5B—C9B1.361 (3)
N1A—C5A1.338 (3)N5B—C8B1.365 (3)
N1A—C1A1.345 (3)N5B—H5B0.78 (2)
N1B—C5B1.332 (3)N6B—C10B1.339 (3)
N1B—C1B1.338 (3)N6B—H50.8600
C1A—C2A1.372 (3)N6B—H60.8600
C1A—C7A1.514 (3)N7B—C9B1.322 (3)
C1B—C2B1.374 (4)N7B—H10.8600
C1B—C7B1.510 (4)N7B—H20.8600
C2A—C3A1.393 (3)N8B—C8B1.311 (3)
C2A—H2A0.9300N8B—H30.8600
C2B—C3B1.400 (4)N8B—H40.8600
C2B—H2B0.9300O6—H610.834 (18)
C3A—C4A1.391 (4)O6—H620.808 (18)
C3B—C4B1.390 (4)O7—H710.821 (18)
C4A—C5A1.382 (3)O7—H720.821 (19)
C4A—H4A0.9300O8—H810.86 (4)
C4B—C5B1.377 (3)O8—H820.84 (4)
C4B—H4B0.9300O9—H910.877 (18)
C5A—C6A1.507 (4)O9—H920.876 (19)
C5B—C6B1.512 (4)O10—H1010.84 (4)
N3A—C10A1.325 (3)O10—H1020.89 (4)
N3A—C8A1.347 (4)O11—H1110.85 (2)
N4A—C9A1.318 (3)O11—H1120.83 (6)
N1B—Cu1—N1A172.83 (10)O2B—C6B—C5B119.0 (2)
N1B—Cu1—O3B77.96 (8)O3B—C6B—C5B114.0 (2)
N1A—Cu1—O3B106.34 (8)O4A—C7A—O5A126.4 (2)
N1B—Cu1—O5B78.63 (8)O4A—C7A—C1A118.3 (2)
N1A—Cu1—O5B97.51 (8)O5A—C7A—C1A115.3 (2)
O3B—Cu1—O5B155.97 (7)O4B—C7B—O5B125.3 (3)
N1B—Cu1—O5A98.19 (8)O4B—C7B—C1B119.6 (2)
N1A—Cu1—O5A76.19 (8)O5B—C7B—C1B115.1 (2)
O3B—Cu1—O5A91.11 (8)C10A—N3A—C8A115.3 (2)
O5B—Cu1—O5A97.53 (8)C9A—N4A—C8A115.7 (2)
N1B—Cu1—O3A109.24 (8)C10A—N5A—C9A120.3 (2)
N1A—Cu1—O3A76.48 (8)C10A—N5A—H5A116 (2)
O3B—Cu1—O3A94.16 (7)C9A—N5A—H5A123 (2)
O5B—Cu1—O3A88.44 (7)C8A—N6A—H7120.0
O5A—Cu1—O3A152.56 (6)C8A—N6A—H8120.0
C3A—O1A—H1A112 (3)H7—N6A—H8120.0
C3B—O1B—H1B111 (3)C9A—N7A—H11120.0
C6A—O3A—Cu1112.32 (16)C9A—N7A—H12120.0
C6B—O3B—Cu1114.11 (17)H11—N7A—H12120.0
C7A—O5A—Cu1113.08 (16)C10A—N8A—H9120.0
C7B—O5B—Cu1113.01 (17)C10A—N8A—H10120.0
C5A—N1A—C1A119.4 (2)H9—N8A—H10120.0
C5A—N1A—Cu1119.96 (17)N6A—C8A—N4A115.9 (3)
C1A—N1A—Cu1120.37 (16)N6A—C8A—N3A117.4 (3)
C5B—N1B—C1B120.4 (2)N4A—C8A—N3A126.7 (2)
C5B—N1B—Cu1119.86 (17)N7A—C9A—N4A121.1 (3)
C1B—N1B—Cu1119.10 (17)N7A—C9A—N5A117.8 (3)
N1A—C1A—C2A122.0 (2)N4A—C9A—N5A121.0 (3)
N1A—C1A—C7A114.7 (2)N8A—C10A—N3A121.4 (3)
C2A—C1A—C7A123.3 (2)N8A—C10A—N5A117.5 (3)
N1B—C1B—C2B121.9 (2)N3A—C10A—N5A121.0 (3)
N1B—C1B—C7B113.4 (2)C8B—N3B—C10B115.4 (2)
C2B—C1B—C7B124.7 (2)C9B—N4B—C10B115.2 (2)
C1A—C2A—C3A119.2 (2)C9B—N5B—C8B119.7 (2)
C1A—C2A—H2A120.4C9B—N5B—H5B117 (2)
C3A—C2A—H2A120.4C8B—N5B—H5B123 (2)
C1B—C2B—C3B118.0 (2)C10B—N6B—H5120.0
C1B—C2B—H2B121.0C10B—N6B—H6120.0
C3B—C2B—H2B121.0H5—N6B—H6120.0
O1A—C3A—C4A123.4 (2)C9B—N7B—H1120.0
O1A—C3A—C2A118.2 (2)C9B—N7B—H2120.0
C4A—C3A—C2A118.4 (2)H1—N7B—H2120.0
O1B—C3B—C4B123.2 (2)C8B—N8B—H3120.0
O1B—C3B—C2B117.2 (2)C8B—N8B—H4120.0
C4B—C3B—C2B119.6 (2)H3—N8B—H4120.0
C5A—C4A—C3A119.2 (2)N8B—C8B—N3B120.8 (2)
C5A—C4A—H4A120.4N8B—C8B—N5B118.1 (2)
C3A—C4A—H4A120.4N3B—C8B—N5B121.1 (2)
C5B—C4B—C3B118.5 (2)N4B—C9B—N7B121.9 (2)
C5B—C4B—H4B120.8N4B—C9B—N5B121.5 (2)
C3B—C4B—H4B120.8N7B—C9B—N5B116.5 (2)
N1A—C5A—C4A121.7 (2)N3B—C10B—N6B115.5 (3)
N1A—C5A—C6A115.1 (2)N3B—C10B—N4B127.1 (2)
C4A—C5A—C6A123.2 (2)N6B—C10B—N4B117.4 (2)
N1B—C5B—C4B121.7 (2)H61—O6—H62101 (3)
N1B—C5B—C6B113.4 (2)H71—O7—H72104 (4)
C4B—C5B—C6B125.0 (2)H81—O8—H82116 (4)
O2A—C6A—O3A126.0 (3)H91—O9—H92121 (4)
O2A—C6A—C5A118.0 (2)H101—O10—H10285 (4)
O3A—C6A—C5A116.0 (2)H111—O11—H11289 (6)
O2B—C6B—O3B126.9 (3)
N1B—Cu1—O3A—C6A174.06 (18)C1A—N1A—C5A—C4A0.1 (4)
N1A—Cu1—O3A—C6A1.43 (18)Cu1—N1A—C5A—C4A174.41 (19)
O3B—Cu1—O3A—C6A107.24 (18)C1A—N1A—C5A—C6A179.2 (2)
O5B—Cu1—O3A—C6A96.68 (18)Cu1—N1A—C5A—C6A4.7 (3)
O5A—Cu1—O3A—C6A6.7 (3)C3A—C4A—C5A—N1A1.3 (4)
N1B—Cu1—O3B—C6B1.61 (19)C3A—C4A—C5A—C6A179.7 (2)
N1A—Cu1—O3B—C6B172.46 (19)C1B—N1B—C5B—C4B0.4 (4)
O5B—Cu1—O3B—C6B14.9 (3)Cu1—N1B—C5B—C4B170.2 (2)
O5A—Cu1—O3B—C6B96.53 (19)C1B—N1B—C5B—C6B179.7 (2)
O3A—Cu1—O3B—C6B110.41 (19)Cu1—N1B—C5B—C6B9.8 (3)
N1B—Cu1—O5A—C7A169.77 (19)C3B—C4B—C5B—N1B0.8 (4)
N1A—Cu1—O5A—C7A5.67 (19)C3B—C4B—C5B—C6B179.2 (3)
O3B—Cu1—O5A—C7A112.23 (19)Cu1—O3A—C6A—O2A179.5 (2)
O5B—Cu1—O5A—C7A90.25 (19)Cu1—O3A—C6A—C5A0.5 (3)
O3A—Cu1—O5A—C7A11.0 (3)N1A—C5A—C6A—O2A176.8 (2)
N1B—Cu1—O5B—C7B5.00 (19)C4A—C5A—C6A—O2A4.1 (4)
N1A—Cu1—O5B—C7B168.87 (19)N1A—C5A—C6A—O3A3.2 (3)
O3B—Cu1—O5B—C7B18.3 (3)C4A—C5A—C6A—O3A175.9 (2)
O5A—Cu1—O5B—C7B91.90 (19)Cu1—O3B—C6B—O2B178.7 (3)
O3A—Cu1—O5B—C7B114.98 (19)Cu1—O3B—C6B—C5B2.8 (3)
N1B—Cu1—N1A—C5A140.1 (6)N1B—C5B—C6B—O2B173.5 (3)
O3B—Cu1—N1A—C5A93.80 (19)C4B—C5B—C6B—O2B6.5 (4)
O5B—Cu1—N1A—C5A83.18 (19)N1B—C5B—C6B—O3B7.8 (3)
O5A—Cu1—N1A—C5A179.1 (2)C4B—C5B—C6B—O3B172.1 (3)
O3A—Cu1—N1A—C5A3.38 (18)Cu1—O5A—C7A—O4A173.7 (2)
N1B—Cu1—N1A—C1A34.3 (8)Cu1—O5A—C7A—C1A5.5 (3)
O3B—Cu1—N1A—C1A91.79 (19)N1A—C1A—C7A—O4A177.3 (2)
O5B—Cu1—N1A—C1A91.23 (19)C2A—C1A—C7A—O4A1.6 (4)
O5A—Cu1—N1A—C1A4.72 (18)N1A—C1A—C7A—O5A2.0 (3)
O3A—Cu1—N1A—C1A177.8 (2)C2A—C1A—C7A—O5A179.1 (2)
N1A—Cu1—N1B—C5B121.0 (6)Cu1—O5B—C7B—O4B179.7 (3)
O3B—Cu1—N1B—C5B6.50 (19)Cu1—O5B—C7B—C1B1.3 (3)
O5B—Cu1—N1B—C5B179.0 (2)N1B—C1B—C7B—O4B173.3 (3)
O5A—Cu1—N1B—C5B82.9 (2)C2B—C1B—C7B—O4B6.8 (5)
O3A—Cu1—N1B—C5B96.7 (2)N1B—C1B—C7B—O5B5.2 (4)
N1A—Cu1—N1B—C1B49.6 (7)C2B—C1B—C7B—O5B174.7 (3)
O3B—Cu1—N1B—C1B177.1 (2)C9A—N4A—C8A—N6A179.6 (3)
O5B—Cu1—N1B—C1B8.34 (19)C9A—N4A—C8A—N3A0.4 (4)
O5A—Cu1—N1B—C1B87.8 (2)C10A—N3A—C8A—N6A179.8 (3)
O3A—Cu1—N1B—C1B92.6 (2)C10A—N3A—C8A—N4A0.1 (4)
C5A—N1A—C1A—C2A1.1 (4)C8A—N4A—C9A—N7A179.7 (3)
Cu1—N1A—C1A—C2A175.49 (19)C8A—N4A—C9A—N5A1.2 (4)
C5A—N1A—C1A—C7A177.9 (2)C10A—N5A—C9A—N7A180.0 (3)
Cu1—N1A—C1A—C7A3.5 (3)C10A—N5A—C9A—N4A1.4 (4)
C5B—N1B—C1B—C2B0.7 (4)C8A—N3A—C10A—N8A179.5 (3)
Cu1—N1B—C1B—C2B169.8 (2)C8A—N3A—C10A—N5A0.0 (4)
C5B—N1B—C1B—C7B179.4 (2)C9A—N5A—C10A—N8A179.7 (3)
Cu1—N1B—C1B—C7B10.0 (3)C9A—N5A—C10A—N3A0.8 (4)
N1A—C1A—C2A—C3A0.9 (4)C10B—N3B—C8B—N8B178.3 (2)
C7A—C1A—C2A—C3A178.0 (2)C10B—N3B—C8B—N5B1.1 (4)
N1B—C1B—C2B—C3B0.0 (4)C9B—N5B—C8B—N8B180.0 (2)
C7B—C1B—C2B—C3B179.9 (3)C9B—N5B—C8B—N3B0.5 (4)
C1A—C2A—C3A—O1A179.3 (2)C10B—N4B—C9B—N7B177.6 (2)
C1A—C2A—C3A—C4A0.3 (4)C10B—N4B—C9B—N5B1.9 (4)
C1B—C2B—C3B—O1B179.1 (2)C8B—N5B—C9B—N4B2.2 (4)
C1B—C2B—C3B—C4B1.2 (4)C8B—N5B—C9B—N7B177.4 (2)
O1A—C3A—C4A—C5A179.7 (2)C8B—N3B—C10B—N6B178.4 (2)
C2A—C3A—C4A—C5A1.4 (4)C8B—N3B—C10B—N4B1.5 (4)
O1B—C3B—C4B—C5B178.8 (3)C9B—N4B—C10B—N3B0.0 (4)
C2B—C3B—C4B—C5B1.5 (4)C9B—N4B—C10B—N6B179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O7i0.74 (3)1.84 (3)2.573 (3)169 (4)
O1B—H1B···O6ii0.76 (4)1.83 (4)2.579 (3)173 (4)
N5A—H5A···O10ii0.77 (2)2.06 (3)2.787 (3)159 (3)
N6A—H7···O4Biii0.862.132.980 (3)173
N6A—H8···O110.862.132.962 (4)162
N7A—H11···O1Biii0.862.253.106 (3)172
N7A—H12···O9iv0.862.112.910 (4)155
N8A—H9···N3Av0.862.112.973 (4)177
N8A—H10···O10ii0.862.252.986 (4)144
N8A—H10···O11v0.862.563.202 (4)133
N5B—H5B···O2Avi0.78 (2)1.96 (3)2.698 (3)157 (3)
N6B—H5···O1Ai0.862.283.131 (3)170
N6B—H6···O90.862.382.905 (3)120
N7B—H1···O5Bvii0.862.243.021 (3)151
N7B—H2···O2Avi0.862.112.852 (3)144
N8B—H3···O4Ai0.862.102.930 (3)163
N8B—H4···O8vi0.862.012.857 (3)169
O6—H61···O5A0.83 (2)1.87 (2)2.706 (3)177 (4)
O6—H62···O2Bviii0.81 (2)1.97 (2)2.756 (3)163 (4)
O7—H71···O3Bviii0.82 (2)1.94 (2)2.741 (3)163 (4)
O7—H72···O5B0.82 (2)1.95 (2)2.766 (3)171 (4)
O8—H81···O4Biii0.86 (2)1.86 (2)2.714 (3)173 (4)
O8—H82···O3A0.83 (2)1.90 (2)2.701 (3)162 (4)
O9—H91···O3B0.88 (2)1.97 (2)2.839 (3)172 (4)
O9—H92···O4Aiii0.88 (2)2.13 (2)3.005 (3)176 (4)
O10—H101···O8ix0.84 (4)2.24 (3)3.030 (4)157 (5)
O10—H102···O4A0.89 (4)2.39 (5)2.695 (3)101 (4)
O11—H111···O10x0.85 (2)2.44 (4)3.196 (5)149 (7)
O11—H112···N4Bx0.83 (6)2.53 (7)2.996 (4)116 (6)
O11—H112···O80.83 (6)2.60 (8)3.090 (5)118 (7)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z+1; (iii) x, y, z1; (iv) x+1, y+2, z; (v) x, y+2, z+1; (vi) x+1, y+3/2, z+1/2; (vii) x+1, y, z; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x1, y, z.

Experimental details

Crystal data
Chemical formula(C3H7N6)2[Cu(C7H3NO5)2]·6H2O
Mr788.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2894 (3), 37.7699 (12), 7.3414 (2)
β (°) 94.016 (2)
V3)3122.68 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.28 × 0.20 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.714, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
22082, 7390, 5112
Rint0.054
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.03
No. of reflections7390
No. of parameters508
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond angles (º) top
C10A—N3A—C8A115.3 (2)C8B—N3B—C10B115.4 (2)
C9A—N4A—C8A115.7 (2)C9B—N4B—C10B115.2 (2)
C10A—N5A—C9A120.3 (2)C9B—N5B—C8B119.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O7i0.74 (3)1.84 (3)2.573 (3)169 (4)
O1B—H1B···O6ii0.76 (4)1.83 (4)2.579 (3)173 (4)
N5A—H5A···O10ii0.77 (2)2.06 (3)2.787 (3)159 (3)
N6A—H7···O4Biii0.862.132.980 (3)172.8
N6A—H8···O110.862.132.962 (4)161.6
N7A—H11···O1Biii0.862.253.106 (3)172.4
N7A—H12···O9iv0.862.112.910 (4)154.9
N8A—H9···N3Av0.862.112.973 (4)177.2
N8A—H10···O10ii0.862.252.986 (4)144.2
N8A—H10···O11v0.862.563.202 (4)132.5
N5B—H5B···O2Avi0.78 (2)1.96 (3)2.698 (3)157 (3)
N6B—H5···O1Ai0.862.283.131 (3)170.0
N6B—H6···O90.862.382.905 (3)119.8
N7B—H1···O5Bvii0.862.243.021 (3)151.2
N7B—H2···O2Avi0.862.112.852 (3)144.4
N8B—H3···O4Ai0.862.102.930 (3)162.9
N8B—H4···O8vi0.862.012.857 (3)169.4
O6—H61···O5A0.83 (2)1.87 (2)2.706 (3)177 (4)
O6—H62···O2Bviii0.81 (2)1.97 (2)2.756 (3)163 (4)
O7—H71···O3Bviii0.82 (2)1.94 (2)2.741 (3)163 (4)
O7—H72···O5B0.82 (2)1.95 (2)2.766 (3)171 (4)
O8—H81···O4Biii0.86 (2)1.86 (2)2.714 (3)173 (4)
O8—H82···O3A0.83 (2)1.90 (2)2.701 (3)162 (4)
O9—H91···O3B0.88 (2)1.97 (2)2.839 (3)172 (4)
O9—H92···O4Aiii0.88 (2)2.13 (2)3.005 (3)176 (4)
O10—H101···O8ix0.84 (4)2.24 (3)3.030 (4)157 (5)
O10—H102···O4A0.89 (4)2.39 (5)2.695 (3)101 (4)
O11—H111···O10x0.85 (2)2.44 (4)3.196 (5)149 (7)
O11—H112···N4Bx0.83 (6)2.53 (7)2.996 (4)116 (6)
O11—H112···O80.83 (6)2.60 (8)3.090 (5)118 (7)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z+1; (iii) x, y, z1; (iv) x+1, y+2, z; (v) x, y+2, z+1; (vi) x+1, y+3/2, z+1/2; (vii) x+1, y, z; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x1, y, z.
 

References

First citationAghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144–m145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m252–m253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1173-m1174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds