metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m781-m782

Poly[di-μ-cis-cyclo­hexane-1,4-di­carboxyl­ato-μ-trans-cyclo­hexane-1,4-di­carboxyl­ato-bis­­[dipyrido[3,2-a:2′,3′-c]phenazine]trimanganese(II)]

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China, and bHeilongjiang Key Laboratory of Fibrosis Biotherapy, Mudanjiang Medical College, Mudanjiang 157011, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: zhangwenzhi1968@yahoo.com.cn

(Received 26 April 2008; accepted 30 April 2008; online 7 May 2008)

In the title compound, [Mn3(C8H10O4)3(C18H10N4)2], one Mn atom and one cyclohexane-1,4-dicarboxylate (chdc) ligand are located on centres of inversion. One of the two independent Mn atoms is seven-coordinate, binding to five carboxyl­ate O atoms from different chdc ligands and two phenanthrene N atoms from a dipyrido[3,2-a:2′,3′-c]phenazine (L) ligand, while the second Mn atom is six-coordinate, binding to six carboxyl­ate O atoms from different chdc ligands. The cis-chdc ligands bridge the trinuclear MnII clusters, forming chains, which are further linked into a three-dimensional network.

Related literature

For related structures, see: De (2007[De, G. (2007). Acta Cryst. E63, m1748-m1749.]); Li (2007[Li, Y.-J. (2007). Acta Cryst. E63, m1654-m1655.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C8H10O4)3(C18H10N4)2]

  • Mr = 1239.90

  • Triclinic, [P \overline 1]

  • a = 8.5730 (17) Å

  • b = 10.614 (2) Å

  • c = 14.846 (3) Å

  • α = 77.34 (3)°

  • β = 81.99 (3)°

  • γ = 82.67 (3)°

  • V = 1298.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 (2) K

  • 0.33 × 0.22 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.762, Tmax = 0.863

  • 12776 measured reflections

  • 5830 independent reflections

  • 3707 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.176

  • S = 1.05

  • 5830 reflections

  • 376 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Cyclohexanedicarboxylic acid (H2chdc), as a flexible multidentate ligand, has been extensively studied in the chemistry of coordination polymers (De, 2007; Li, 2007). Here, we report a new MnII coordination polymer with chdc ligand, namely [Mn3(cis-chdc)3(trans-chdc)(L)2] (I), where L = dipyrido[3,2-a:2',3'-c]-phenazine.

In (I) the Mn1 atom is seven-coordinate binding to five carboxylate O atoms from different chdc ligands, and two phenanthrene N atoms from L ligand (Fig. 1 and Table 1). The Mn2 atom is six-coordinate binding to six carboxylate O atoms from different chdc ligands (Fig. 1 and Table 1). Interestingly, the chdc ligands bridge neighboring MnII atoms to give a trinuclear MnII cluster. The cis-chdc ligands bridge the trinuclear MnII clusters to form a chain structure, which are further linked into a 3D network structure (Fig. 2). One Mn atom and one 1,4-cyclohexanedicarboxylate molecule are located on a centre of inversion.

Related literature top

For related structures, see: De (2007); Li (2007).

Experimental top

A mixture of Mn(NO3)2.2H2O (1 mmol), H2chdc (1 mmol) and L (1 mmol) was dissolved in 12 ml distilled water, followed by addition of triethylamine until the pH value of the system was approximately 5.5. The resulting solution was sealed in a 23-ml Teflon-lined stainless steel autoclave and heated at 175°C for 8 days under autogenous pressure. The reaction vessel was then slowly cooled to room temperature. Pale yellow block-like crystals of (I) suitable for single-crystal X-ray diffraction analysis were obtained from the resulting solution.

Refinement top

C–bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x-1, y, z; (ii) 2-x, 1-y, -z; (iii) 3-x, 1-y, -z; (iv) 2-x, 2-y, -z.
[Figure 2] Fig. 2. Packing diagram of (I).
Poly[di-µ-cis-cyclohexane-1,4-dicarboxylato-µ-trans-cyclohexane-1,4- dicarboxylato-bis[dipyrido[3,2-a:2',3'-c]phenazine]trimanganese(II)] top
Crystal data top
[Mn3(C8H10O4)3(C18H10N4)2]Z = 1
Mr = 1239.90F(000) = 637
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5730 (17) ÅCell parameters from 8527 reflections
b = 10.614 (2) Åθ = 3.0–27.5°
c = 14.846 (3) ŵ = 0.80 mm1
α = 77.34 (3)°T = 293 K
β = 81.99 (3)°Block, pale yellow
γ = 82.67 (3)°0.33 × 0.22 × 0.19 mm
V = 1298.6 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5830 independent reflections
Radiation source: rotating anode3707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.762, Tmax = 0.863l = 1619
12776 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0908P)2]
where P = (Fo2 + 2Fc2)/3
5830 reflections(Δ/σ)max < 0.001
376 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Mn3(C8H10O4)3(C18H10N4)2]γ = 82.67 (3)°
Mr = 1239.90V = 1298.6 (4) Å3
Triclinic, P1Z = 1
a = 8.5730 (17) ÅMo Kα radiation
b = 10.614 (2) ŵ = 0.80 mm1
c = 14.846 (3) ÅT = 293 K
α = 77.34 (3)°0.33 × 0.22 × 0.19 mm
β = 81.99 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5830 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3707 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.863Rint = 0.062
12776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
5830 reflectionsΔρmin = 0.74 e Å3
376 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3154 (5)0.6357 (5)0.2263 (4)0.0481 (12)
H11.34260.60170.17290.058*
C21.4234 (5)0.7038 (5)0.2518 (4)0.0542 (13)
H21.52160.71370.21690.065*
C31.3834 (5)0.7570 (5)0.3297 (4)0.0513 (13)
H31.45350.80440.34760.062*
C41.2354 (5)0.7384 (4)0.3817 (3)0.0361 (9)
C51.1352 (4)0.6662 (4)0.3517 (3)0.0322 (9)
C60.9812 (5)0.6398 (4)0.4043 (3)0.0312 (8)
C70.7506 (5)0.5439 (4)0.4195 (3)0.0428 (10)
H70.68730.49490.39770.051*
C80.6944 (5)0.5891 (5)0.5002 (3)0.0448 (11)
H80.59570.57020.53140.054*
C90.7855 (5)0.6617 (4)0.5334 (3)0.0405 (10)
H90.75040.69150.58790.049*
C100.9314 (5)0.6901 (4)0.4842 (3)0.0334 (9)
C111.0314 (5)0.7716 (4)0.5137 (3)0.0320 (9)
C121.1837 (5)0.7951 (4)0.4643 (3)0.0361 (9)
C131.2187 (5)0.9248 (4)0.5624 (3)0.0368 (9)
C141.3088 (5)1.0088 (5)0.5907 (4)0.0467 (11)
H141.40851.02500.55970.056*
C151.2492 (5)1.0660 (4)0.6635 (3)0.0455 (11)
H151.30961.12040.68210.055*
C161.0994 (6)1.0448 (4)0.7108 (3)0.0451 (11)
H161.06021.08620.75960.054*
C171.0108 (6)0.9640 (5)0.6856 (3)0.0459 (11)
H170.91160.94920.71780.055*
C181.0681 (5)0.9021 (4)0.6110 (3)0.0372 (9)
C191.2088 (4)0.3188 (4)0.1441 (3)0.0330 (9)
C201.3374 (4)0.2042 (4)0.1547 (3)0.0329 (9)
H201.28880.12770.14960.039*
C211.4043 (5)0.1721 (4)0.2488 (3)0.0371 (9)
H21A1.31730.16780.29830.044*
H21B1.46480.08750.25590.044*
C221.5100 (4)0.2725 (4)0.2577 (3)0.0329 (9)
H22A1.55590.24490.31580.039*
H22B1.44640.35470.25900.039*
C231.6420 (4)0.2913 (4)0.1774 (3)0.0344 (9)
H231.70470.20700.17900.041*
C241.7540 (5)0.3865 (4)0.1871 (3)0.0371 (10)
C251.5739 (5)0.3280 (4)0.0842 (3)0.0389 (10)
H25A1.51120.41150.07970.047*
H25B1.65980.33590.03400.047*
C261.4706 (5)0.2260 (5)0.0744 (3)0.0416 (10)
H26A1.53590.14470.07260.050*
H26B1.42480.25350.01610.050*
C270.9657 (5)0.7352 (4)0.0992 (3)0.0360 (9)
C280.9835 (5)0.8607 (4)0.0286 (3)0.0426 (10)
H281.00180.83910.03320.051*
C291.1322 (5)0.9177 (4)0.0430 (3)0.0400 (10)
H29A1.11980.93680.10470.048*
H29B1.22360.85440.03830.048*
C300.8404 (5)0.9579 (4)0.0298 (3)0.0423 (10)
H30A0.81660.97870.09100.051*
H30B0.75010.92060.01720.051*
N11.1746 (4)0.6163 (3)0.2743 (2)0.0364 (8)
N20.8915 (4)0.5678 (3)0.3718 (2)0.0340 (8)
N31.2766 (4)0.8696 (4)0.4881 (3)0.0407 (9)
N40.9733 (4)0.8249 (3)0.5858 (2)0.0380 (8)
O11.1606 (4)0.3541 (3)0.0659 (2)0.0532 (9)
O21.1563 (3)0.3674 (3)0.2134 (2)0.0397 (7)
O31.8227 (4)0.4527 (4)0.1177 (3)0.0595 (10)
O41.7807 (4)0.3935 (3)0.2666 (2)0.0532 (9)
O50.8733 (4)0.7288 (3)0.1720 (2)0.0461 (8)
O61.0573 (3)0.6357 (3)0.0822 (2)0.0365 (7)
Mn10.97563 (7)0.51832 (6)0.22819 (4)0.02964 (19)
Mn21.00000.50000.00000.0292 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.049 (3)0.057 (3)0.008 (2)0.005 (2)0.025 (2)
C20.038 (2)0.069 (3)0.063 (3)0.019 (2)0.008 (2)0.031 (3)
C30.039 (2)0.059 (3)0.066 (3)0.016 (2)0.001 (2)0.031 (3)
C40.036 (2)0.034 (2)0.040 (2)0.0096 (17)0.0023 (18)0.0130 (19)
C50.033 (2)0.031 (2)0.036 (2)0.0062 (16)0.0048 (17)0.0108 (18)
C60.038 (2)0.0253 (19)0.033 (2)0.0071 (16)0.0100 (17)0.0067 (17)
C70.042 (2)0.041 (2)0.050 (3)0.0163 (19)0.006 (2)0.013 (2)
C80.035 (2)0.057 (3)0.047 (3)0.017 (2)0.007 (2)0.020 (2)
C90.042 (2)0.044 (3)0.039 (2)0.0143 (19)0.0044 (19)0.015 (2)
C100.036 (2)0.029 (2)0.038 (2)0.0105 (16)0.0045 (18)0.0087 (18)
C110.038 (2)0.029 (2)0.033 (2)0.0069 (16)0.0070 (17)0.0105 (17)
C120.036 (2)0.035 (2)0.042 (2)0.0061 (17)0.0077 (18)0.015 (2)
C130.038 (2)0.032 (2)0.044 (3)0.0054 (17)0.0104 (19)0.0127 (19)
C140.037 (2)0.054 (3)0.058 (3)0.010 (2)0.005 (2)0.028 (2)
C150.047 (3)0.042 (3)0.057 (3)0.008 (2)0.013 (2)0.023 (2)
C160.057 (3)0.043 (3)0.042 (3)0.007 (2)0.007 (2)0.020 (2)
C170.052 (3)0.051 (3)0.040 (3)0.019 (2)0.004 (2)0.020 (2)
C180.041 (2)0.034 (2)0.040 (2)0.0120 (18)0.0062 (19)0.0084 (19)
C190.033 (2)0.0235 (19)0.044 (2)0.0064 (16)0.0099 (18)0.0058 (18)
C200.031 (2)0.0238 (19)0.047 (2)0.0073 (15)0.0061 (18)0.0107 (18)
C210.036 (2)0.030 (2)0.044 (3)0.0092 (17)0.0082 (18)0.0013 (19)
C220.0299 (19)0.037 (2)0.034 (2)0.0113 (16)0.0075 (16)0.0051 (18)
C230.0288 (19)0.030 (2)0.047 (3)0.0068 (16)0.0013 (18)0.0136 (19)
C240.031 (2)0.037 (2)0.047 (3)0.0098 (17)0.0017 (19)0.017 (2)
C250.038 (2)0.044 (2)0.037 (2)0.0093 (18)0.0001 (18)0.013 (2)
C260.035 (2)0.052 (3)0.044 (3)0.0067 (19)0.0022 (19)0.022 (2)
C270.047 (2)0.028 (2)0.037 (2)0.0106 (18)0.009 (2)0.0073 (18)
C280.053 (3)0.026 (2)0.048 (3)0.0078 (18)0.001 (2)0.0045 (19)
C290.039 (2)0.031 (2)0.047 (3)0.0050 (18)0.003 (2)0.003 (2)
C300.045 (2)0.032 (2)0.050 (3)0.0124 (18)0.005 (2)0.004 (2)
N10.0386 (18)0.0342 (19)0.039 (2)0.0080 (15)0.0005 (15)0.0128 (16)
N20.0337 (17)0.0320 (18)0.040 (2)0.0101 (14)0.0060 (15)0.0099 (16)
N30.0353 (18)0.045 (2)0.049 (2)0.0119 (15)0.0009 (16)0.0233 (19)
N40.0442 (19)0.041 (2)0.0338 (19)0.0150 (16)0.0048 (16)0.0112 (16)
O10.069 (2)0.0470 (19)0.048 (2)0.0177 (16)0.0304 (17)0.0172 (16)
O20.0408 (16)0.0360 (16)0.0435 (18)0.0027 (12)0.0073 (14)0.0129 (14)
O30.055 (2)0.063 (2)0.063 (2)0.0343 (18)0.0056 (17)0.0086 (19)
O40.0518 (19)0.061 (2)0.059 (2)0.0265 (16)0.0042 (16)0.0263 (18)
O50.0587 (19)0.0331 (16)0.0444 (19)0.0054 (14)0.0034 (16)0.0088 (14)
O60.0482 (16)0.0239 (14)0.0425 (17)0.0089 (12)0.0098 (13)0.0115 (13)
Mn10.0326 (3)0.0273 (3)0.0316 (4)0.0081 (2)0.0036 (3)0.0088 (3)
Mn20.0341 (4)0.0253 (4)0.0306 (5)0.0070 (3)0.0073 (4)0.0067 (4)
Geometric parameters (Å, º) top
C1—N11.329 (5)C21—H21A0.9700
C1—C21.383 (6)C21—H21B0.9700
C1—H10.9300C22—C231.523 (6)
C2—C31.379 (6)C22—H22A0.9700
C2—H20.9300C22—H22B0.9700
C3—C41.403 (6)C23—C241.520 (5)
C3—H30.9300C23—C251.529 (6)
C4—C51.396 (5)C23—H230.9800
C4—C121.472 (5)C24—O31.234 (5)
C5—N11.351 (5)C24—O41.253 (5)
C5—C61.464 (5)C25—C261.526 (6)
C6—N21.351 (5)C25—H25A0.9700
C6—C101.397 (5)C25—H25B0.9700
C7—N21.337 (5)C26—H26A0.9700
C7—C81.389 (6)C26—H26B0.9700
C7—H70.9300C27—O51.243 (5)
C8—C91.368 (6)C27—O61.283 (5)
C8—H80.9300C27—C281.514 (6)
C9—C101.391 (6)C28—C301.500 (6)
C9—H90.9300C28—C291.539 (6)
C10—C111.461 (5)C28—H280.9800
C11—N41.325 (5)C29—C30i1.533 (6)
C11—C121.428 (6)C29—H29A0.9700
C12—N31.322 (5)C29—H29B0.9700
C13—N31.365 (5)C30—C29i1.533 (6)
C13—C181.411 (6)C30—H30A0.9700
C13—C141.414 (6)C30—H30B0.9700
C14—C151.360 (6)N1—Mn12.356 (3)
C14—H140.9300N2—Mn12.303 (3)
C15—C161.395 (7)O1—Mn22.102 (3)
C15—H150.9300O2—Mn12.107 (3)
C16—C171.356 (6)O3—Mn2ii2.165 (3)
C16—H160.9300O3—Mn1ii2.495 (4)
C17—C181.408 (6)O4—Mn1ii2.200 (3)
C17—H170.9300O5—Mn12.312 (3)
C18—N41.364 (5)O6—Mn22.218 (3)
C19—O11.251 (5)O6—Mn12.314 (3)
C19—O21.253 (5)Mn1—O4iii2.200 (3)
C19—C201.531 (5)Mn1—O3iii2.495 (4)
C20—C261.531 (6)Mn2—O1iv2.102 (3)
C20—C211.536 (6)Mn2—O3v2.165 (3)
C20—H200.9800Mn2—O3iii2.165 (3)
C21—C221.521 (5)Mn2—O6iv2.218 (3)
N1—C1—C2123.2 (4)C23—C25—H25A109.5
N1—C1—H1118.4C26—C25—H25B109.5
C2—C1—H1118.4C23—C25—H25B109.5
C3—C2—C1119.0 (4)H25A—C25—H25B108.0
C3—C2—H2120.5C25—C26—C20111.9 (3)
C1—C2—H2120.5C25—C26—H26A109.2
C2—C3—C4119.0 (4)C20—C26—H26A109.2
C2—C3—H3120.5C25—C26—H26B109.2
C4—C3—H3120.5C20—C26—H26B109.2
C5—C4—C3118.0 (4)H26A—C26—H26B107.9
C5—C4—C12120.2 (3)O5—C27—O6121.1 (4)
C3—C4—C12121.8 (4)O5—C27—C28122.5 (4)
N1—C5—C4122.5 (4)O6—C27—C28116.3 (4)
N1—C5—C6116.7 (3)C30—C28—C27114.1 (4)
C4—C5—C6120.8 (3)C30—C28—C29111.5 (3)
N2—C6—C10122.6 (4)C27—C28—C29108.7 (4)
N2—C6—C5117.5 (3)C30—C28—H28107.4
C10—C6—C5119.9 (3)C27—C28—H28107.4
N2—C7—C8122.9 (4)C29—C28—H28107.4
N2—C7—H7118.5C30i—C29—C28110.7 (4)
C8—C7—H7118.5C30i—C29—H29A109.5
C9—C8—C7119.5 (4)C28—C29—H29A109.5
C9—C8—H8120.3C30i—C29—H29B109.5
C7—C8—H8120.3C28—C29—H29B109.5
C8—C9—C10118.8 (4)H29A—C29—H29B108.1
C8—C9—H9120.6C28—C30—C29i111.0 (4)
C10—C9—H9120.6C28—C30—H30A109.4
C9—C10—C6118.5 (4)C29i—C30—H30A109.4
C9—C10—C11121.6 (4)C28—C30—H30B109.4
C6—C10—C11119.9 (3)C29i—C30—H30B109.4
N4—C11—C12121.9 (4)H30A—C30—H30B108.0
N4—C11—C10117.4 (4)C1—N1—C5118.2 (4)
C12—C11—C10120.6 (3)C1—N1—Mn1125.1 (3)
N3—C12—C11122.4 (3)C5—N1—Mn1116.4 (2)
N3—C12—C4119.1 (4)C7—N2—C6117.6 (3)
C11—C12—C4118.5 (3)C7—N2—Mn1124.1 (3)
N3—C13—C18121.2 (4)C6—N2—Mn1117.8 (3)
N3—C13—C14120.0 (4)C12—N3—C13116.4 (3)
C18—C13—C14118.8 (4)C11—N4—C18116.3 (3)
C15—C14—C13119.8 (4)C19—O1—Mn2137.6 (3)
C15—C14—H14120.1C19—O2—Mn1130.2 (3)
C13—C14—H14120.1C24—O3—Mn2ii158.1 (3)
C14—C15—C16121.5 (4)C24—O3—Mn1ii86.0 (3)
C14—C15—H15119.3Mn2ii—O3—Mn1ii93.87 (12)
C16—C15—H15119.3C24—O4—Mn1ii99.5 (3)
C17—C16—C15120.0 (4)C27—O5—Mn191.5 (2)
C17—C16—H16120.0C27—O6—Mn2124.5 (3)
C15—C16—H16120.0C27—O6—Mn190.3 (2)
C16—C17—C18120.5 (4)Mn2—O6—Mn197.62 (11)
C16—C17—H17119.8O2—Mn1—O4iii95.86 (12)
C18—C17—H17119.8O2—Mn1—N2120.52 (12)
N4—C18—C17118.7 (4)O4iii—Mn1—N282.87 (12)
N4—C18—C13121.8 (4)O2—Mn1—O5147.38 (12)
C17—C18—C13119.5 (4)O4iii—Mn1—O5108.96 (13)
O1—C19—O2124.9 (4)N2—Mn1—O584.24 (12)
O1—C19—C20116.1 (3)O2—Mn1—O691.43 (11)
O2—C19—C20118.9 (4)O4iii—Mn1—O6127.44 (12)
C19—C20—C26110.3 (4)N2—Mn1—O6135.18 (11)
C19—C20—C21114.4 (3)O5—Mn1—O656.78 (10)
C26—C20—C21110.8 (3)O2—Mn1—N184.36 (11)
C19—C20—H20107.0O4iii—Mn1—N1148.93 (13)
C26—C20—H20107.0N2—Mn1—N170.66 (12)
C21—C20—H20107.0O5—Mn1—N184.83 (12)
C22—C21—C20112.2 (3)O6—Mn1—N183.54 (12)
C22—C21—H21A109.2O2—Mn1—O3iii91.42 (12)
C20—C21—H21A109.2O4iii—Mn1—O3iii54.17 (12)
C22—C21—H21B109.2N2—Mn1—O3iii129.79 (12)
C20—C21—H21B109.2O5—Mn1—O3iii86.59 (12)
H21A—C21—H21B107.9O6—Mn1—O3iii73.72 (11)
C21—C22—C23111.7 (3)N1—Mn1—O3iii156.77 (12)
C21—C22—H22A109.3O1iv—Mn2—O1180.00 (17)
C23—C22—H22A109.3O1iv—Mn2—O3v89.57 (15)
C21—C22—H22B109.3O1—Mn2—O3v90.43 (15)
C23—C22—H22B109.3O1iv—Mn2—O3iii90.43 (15)
H22A—C22—H22B107.9O1—Mn2—O3iii89.57 (15)
C24—C23—C22112.7 (3)O3v—Mn2—O3iii180.0 (2)
C24—C23—C25112.4 (4)O1iv—Mn2—O689.89 (11)
C22—C23—C25110.7 (3)O1—Mn2—O690.11 (11)
C24—C23—H23106.9O3v—Mn2—O697.56 (12)
C22—C23—H23106.9O3iii—Mn2—O682.44 (12)
C25—C23—H23106.9O1iv—Mn2—O6iv90.11 (11)
O3—C24—O4120.0 (4)O1—Mn2—O6iv89.89 (11)
O3—C24—C23120.7 (4)O3v—Mn2—O6iv82.44 (12)
O4—C24—C23119.2 (4)O3iii—Mn2—O6iv97.56 (12)
C26—C25—C23110.9 (4)O6—Mn2—O6iv180.00 (11)
C26—C25—H25A109.5
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+2, y+1, z; (v) x+3, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn3(C8H10O4)3(C18H10N4)2]
Mr1239.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5730 (17), 10.614 (2), 14.846 (3)
α, β, γ (°)77.34 (3), 81.99 (3), 82.67 (3)
V3)1298.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.33 × 0.22 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.762, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
12776, 5830, 3707
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.176, 1.05
No. of reflections5830
No. of parameters376
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.74

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (No. 1152 G053).

References

First citationDe, G. (2007). Acta Cryst. E63, m1748–m1749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Y.-J. (2007). Acta Cryst. E63, m1654–m1655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m781-m782
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds