metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(5-Bromo-2-oxido­benzyl­­idene)amino-κ2N,O]-3-methyl­penta­noato-κO}(1,10-phenanthroline-κ2N,N′)copper(II) dihydrate

aKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 31 March 2008; accepted 7 April 2008; online 3 May 2008)

In the title compound, [Cu(C13H14BrNO3)(C12H8N2)]·2H2O, the CuII atom is penta­coordinated in a square-pyramidal geometry. The crystal packing is stabilized by O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Feng et al. (2007[Feng, X.-Z., Zhang, S.-H., Liu, Z., Li, G.-Z. & Jin, L.-X. (2007). Acta Cryst. E63, m529-m531.]); Li et al. (2006[Li, L. Z., Jing, B. Q., Li, L. W. & Xu, T. (2006). Z. Kristallogr. 221, 520-522.]); Royles & Sherrington (2000[Royles, B. J. L. & Sherrington, D. C. (2000). J. Mater. Chem. 10, 2035-2041.]); Jiang et al. (2003[Jiang, Y. M., Zhang, S. H., Zhou, Z. Y. & Zhong, X. X. (2003). Chin. J. Struct. Chem. 22, 89-92.]); Kettmann et al. (1993[Kettmann, V., Frešová, E., Bláhová, M. & Krätsmár-Šmogrovič, J. (1993). Acta Cryst. C49, 1932-1934.]); Zhang (2006[Zhang, S.-H. (2006). Acta Cryst. E62, m3062-m3064.]); Zhang et al. (2003[Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517-520.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H14BrNO3)(C12H8N2)]·2H2O

  • Mr = 591.94

  • Monoclinic, P 21

  • a = 10.6184 (18) Å

  • b = 6.0520 (16) Å

  • c = 19.777 (3) Å

  • β = 93.481 (2)°

  • V = 1268.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 298 (2) K

  • 0.65 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.296, Tmax = 0.846

  • 6692 measured reflections

  • 4255 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.074

  • S = 0.96

  • 4255 reflections

  • 318 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1785 Friedel pairs

  • Flack parameter: 0.054 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H28⋯O1 0.85 2.06 2.904 (8) 174
O5—H29⋯O4 0.85 1.87 2.708 (10) 168
O4—H26⋯O5i 0.85 2.06 2.853 (8) 156
O4—H27⋯O2ii 0.85 2.02 2.746 (7) 143
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes play an important role in antibacterial and catalytic performance, and have attracted widespread interest by researchers (Jiang et al., 2003; Kettmann et al., 1993; Zhang, 2006). Meanwhile, Schiff base complexes containing isoleucine have been studied because they are of great significance in the biological and medical field (Royles et al., 2000; Feng et al., 2007; Li et al., 2006).

The central CuII atom is penta-coordinated (Fig.1). The quadratic planar is composed by O1, N2, O3and N1. The Schiff base forms two chelating rings(O1—C1—C2—N1—Cu1 and N1—C7—C8—C9—O3- Cu1) to the CuIIatom, with a diheral angle of 19.6 (4)° which is in the range observed for many copper Schiff base complexes. The N3 atom occupies the axial position with a N—Cu length of 2.229 (6) Å, comparing with the equatorial Cu—N bond lengths [Cu1—N1 1.924 (6)Å and N2—Cu1 1.975 (6)Å]. The crystal packing is stabilized by O—H···O hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Feng et al. (2007); Li et al. (2006); Royles & Sherrington (2000); Jiang et al. (2003); Kettmann et al. (1993); Zhang (2006); Zhang et al. (2003).

Experimental top

5-Bromo-2-hydroxy-benzaldehyde(0.5 mmol, 100.5 mg) was dissolved in hot ethanol(5 ml), then a mixture of D,L-isoleucine (0.5 mmol, 65.6 mg) and sodium hydroxide (1.0 mmol, 40 mg) was added. After stirring for 1 h, the copper dinitrate trihydrate(0.5 mmol, 120.8 mg) was added and refluxed for another 2 h. At last, an ethanol solution of Phen(0.5 mmol, 99.1 mg) was dropped gradually into to the reaction mixture and refluxed for further 3 h (Zhang et al., 2003; Zhang et al., 2006). The obtained green solution was filtered and held at room temperature for ten days, whereupon green crystals suitable for X-ray diffraction were obtained (yield: 45.2%, based on Cu).

Refinement top

All H atoms were positioned geometrically and were treated as riding atoms with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C) and with O–H distances of 0.85 Å and Uiso(H) = 1.5 Ueq(O). The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound.
{2-[(5-Bromo-2-oxidobenzylidene)amino-κ2N,O]-3-methylpentanoato-κO}(1,10- phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C13H14BrNO3)(C12H8N2)]·2H2OF(000) = 602
Mr = 591.94Dx = 1.550 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.6184 (18) ÅCell parameters from 1263 reflections
b = 6.0520 (16) Åθ = 2.2–18.0°
c = 19.777 (3) ŵ = 2.48 mm1
β = 93.481 (2)°T = 298 K
V = 1268.5 (4) Å3Block, green
Z = 20.65 × 0.10 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4255 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.296, Tmax = 0.846k = 77
6692 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0003P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4255 reflectionsΔρmax = 0.52 e Å3
318 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1785 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.054 (14)
Crystal data top
[Cu(C13H14BrNO3)(C12H8N2)]·2H2OV = 1268.5 (4) Å3
Mr = 591.94Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.6184 (18) ŵ = 2.48 mm1
b = 6.0520 (16) ÅT = 298 K
c = 19.777 (3) Å0.65 × 0.10 × 0.07 mm
β = 93.481 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4255 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2269 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.846Rint = 0.053
6692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.52 e Å3
S = 0.96Δρmin = 0.26 e Å3
4255 reflectionsAbsolute structure: Flack (1983), 1785 Friedel pairs
318 parametersAbsolute structure parameter: 0.054 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13990 (7)0.36558 (17)0.76571 (4)0.0503 (3)
Br10.25268 (7)0.10824 (17)0.46920 (4)0.0793 (3)
N10.2064 (5)0.1850 (11)0.6962 (3)0.0440 (18)
N20.0762 (6)0.5406 (11)0.8407 (3)0.052 (2)
N30.0327 (5)0.1749 (11)0.7873 (3)0.0451 (18)
O10.2695 (4)0.2179 (10)0.8245 (2)0.0594 (17)
O20.4200 (4)0.0388 (10)0.8229 (2)0.077 (2)
O30.0499 (4)0.5429 (9)0.6982 (2)0.0540 (17)
O40.4374 (5)0.7917 (11)0.9519 (3)0.115 (3)
H260.51060.78400.97170.172*
H270.44800.78690.90970.172*
O50.3458 (5)0.3755 (14)0.9595 (3)0.124 (2)
H280.32130.32170.92130.186*
H290.36930.50680.95160.186*
C10.3385 (7)0.0792 (17)0.7944 (4)0.057 (2)
C20.3235 (5)0.0722 (14)0.7175 (3)0.050 (2)
H20.31660.08260.70320.060*
C30.4394 (6)0.1737 (12)0.6871 (3)0.056 (2)
H30.51360.10470.71010.067*
C40.4473 (6)0.4206 (12)0.7027 (4)0.068 (3)
H4A0.37660.49370.67870.082*
H4B0.43800.44100.75080.082*
C50.5670 (7)0.5334 (16)0.6844 (5)0.130 (5)
H5A0.63840.44730.70090.195*
H5B0.57150.67760.70460.195*
H5C0.56740.54710.63610.195*
C60.4453 (6)0.1239 (17)0.6124 (3)0.080 (3)
H6A0.38740.21800.58680.121*
H6B0.42290.02780.60410.121*
H6C0.52940.14980.59890.121*
C70.1408 (6)0.1318 (15)0.6429 (3)0.050 (2)
H70.16780.01300.61780.060*
C80.0288 (7)0.2422 (14)0.6194 (3)0.043 (2)
C90.0084 (7)0.4464 (14)0.6466 (4)0.043 (2)
C100.1150 (6)0.5530 (14)0.6133 (3)0.055 (3)
H100.13750.69350.62730.066*
C110.1843 (7)0.4556 (15)0.5618 (4)0.054 (2)
H110.25440.52800.54180.065*
C120.1509 (7)0.2463 (16)0.5385 (4)0.049 (3)
C130.0444 (6)0.1447 (15)0.5654 (3)0.049 (2)
H130.01990.00970.54800.059*
C140.1304 (8)0.7140 (15)0.8709 (4)0.065 (3)
H140.21110.75180.85920.078*
C150.0755 (11)0.843 (2)0.9188 (4)0.090 (3)
H150.11810.96470.93780.108*
C160.0422 (10)0.7901 (18)0.9377 (4)0.084 (4)
H160.08050.87440.97000.101*
C170.1043 (9)0.610 (2)0.9084 (4)0.069 (3)
C180.0414 (8)0.4876 (14)0.8610 (4)0.048 (2)
C190.1002 (7)0.2918 (15)0.8301 (4)0.050 (2)
C200.2215 (8)0.2353 (18)0.8491 (4)0.062 (3)
C210.2734 (8)0.042 (2)0.8195 (5)0.083 (4)
H210.35410.00350.82890.100*
C220.2037 (8)0.0789 (18)0.7768 (4)0.082 (4)
H220.23620.20840.75730.098*
C230.0860 (8)0.0077 (15)0.7629 (4)0.063 (3)
H230.04020.09410.73430.075*
C240.2293 (10)0.536 (2)0.9246 (5)0.090 (4)
H240.27250.61540.95620.108*
C250.2840 (9)0.359 (3)0.8958 (5)0.094 (4)
H250.36450.31820.90690.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0480 (5)0.0569 (7)0.0457 (6)0.0033 (6)0.0014 (4)0.0045 (6)
Br10.0785 (6)0.0890 (9)0.0672 (6)0.0008 (6)0.0220 (5)0.0151 (7)
N10.034 (4)0.058 (5)0.040 (4)0.009 (3)0.003 (3)0.012 (3)
N20.056 (5)0.051 (6)0.047 (4)0.002 (4)0.006 (3)0.006 (4)
N30.053 (4)0.044 (5)0.038 (4)0.008 (4)0.003 (3)0.001 (3)
O10.053 (3)0.082 (5)0.044 (3)0.005 (3)0.004 (3)0.000 (3)
O20.058 (3)0.112 (6)0.061 (4)0.019 (3)0.002 (3)0.028 (4)
O30.062 (3)0.057 (5)0.041 (3)0.000 (3)0.010 (2)0.010 (3)
O40.124 (5)0.134 (8)0.083 (5)0.028 (5)0.019 (4)0.026 (5)
O50.188 (6)0.110 (6)0.070 (4)0.040 (6)0.032 (4)0.021 (5)
C10.050 (6)0.064 (7)0.056 (6)0.006 (5)0.001 (4)0.013 (6)
C20.038 (4)0.050 (6)0.061 (5)0.006 (4)0.005 (4)0.005 (5)
C30.052 (5)0.063 (8)0.053 (5)0.011 (5)0.007 (4)0.001 (5)
C40.053 (5)0.064 (9)0.088 (7)0.019 (5)0.004 (4)0.011 (6)
C50.089 (7)0.105 (12)0.195 (12)0.034 (8)0.005 (7)0.011 (9)
C60.077 (5)0.101 (9)0.064 (6)0.001 (7)0.003 (4)0.004 (7)
C70.050 (5)0.056 (6)0.046 (5)0.000 (5)0.006 (4)0.005 (5)
C80.046 (5)0.055 (7)0.027 (5)0.000 (4)0.005 (4)0.000 (4)
C90.052 (5)0.045 (7)0.033 (5)0.006 (4)0.008 (4)0.002 (4)
C100.076 (6)0.047 (7)0.042 (5)0.016 (5)0.000 (4)0.009 (5)
C110.063 (6)0.049 (7)0.047 (6)0.018 (5)0.009 (4)0.000 (5)
C120.044 (5)0.069 (8)0.035 (5)0.000 (5)0.001 (4)0.004 (5)
C130.065 (5)0.043 (6)0.040 (5)0.001 (5)0.008 (4)0.003 (5)
C140.084 (7)0.051 (7)0.057 (6)0.004 (6)0.011 (5)0.006 (5)
C150.177 (10)0.058 (7)0.033 (5)0.006 (10)0.008 (6)0.009 (6)
C160.132 (9)0.074 (10)0.046 (6)0.041 (8)0.014 (6)0.004 (6)
C170.095 (7)0.079 (8)0.032 (5)0.018 (8)0.000 (5)0.005 (6)
C180.059 (6)0.056 (6)0.030 (5)0.014 (5)0.002 (4)0.002 (4)
C190.047 (5)0.062 (8)0.040 (5)0.004 (5)0.004 (4)0.017 (5)
C200.052 (6)0.079 (8)0.055 (7)0.003 (6)0.001 (5)0.014 (6)
C210.048 (6)0.120 (13)0.081 (8)0.009 (7)0.010 (5)0.041 (8)
C220.060 (6)0.105 (11)0.076 (7)0.040 (7)0.030 (5)0.024 (7)
C230.073 (7)0.046 (7)0.067 (6)0.015 (5)0.018 (5)0.007 (5)
C240.089 (9)0.131 (14)0.052 (7)0.048 (8)0.030 (6)0.027 (7)
C250.070 (7)0.143 (12)0.072 (8)0.027 (10)0.020 (6)0.026 (9)
Geometric parameters (Å, º) top
Cu1—O31.922 (5)C6—H6C0.9600
Cu1—N11.924 (6)C7—C81.417 (9)
Cu1—O11.963 (5)C7—H70.9300
Cu1—N21.975 (6)C8—C131.411 (9)
Cu1—N32.229 (6)C8—C91.413 (9)
Br1—C121.888 (8)C9—C101.429 (9)
N1—C71.269 (7)C10—C111.355 (9)
N1—C21.458 (7)C10—H100.9300
N2—C141.322 (9)C11—C121.401 (10)
N2—C181.373 (8)C11—H110.9300
N3—C231.320 (9)C12—C131.367 (9)
N3—C191.343 (9)C13—H130.9300
O1—C11.284 (9)C14—C151.385 (11)
O2—C11.232 (8)C14—H140.9300
O3—C91.300 (8)C15—C161.365 (11)
O4—H260.8500C15—H150.9300
O4—H270.8500C16—C171.384 (13)
O5—H280.8501C16—H160.9300
O5—H290.8500C17—C181.396 (11)
C1—C21.520 (6)C17—C241.454 (12)
C2—C31.531 (6)C18—C191.456 (10)
C2—H20.9800C19—C201.405 (10)
C3—C61.512 (6)C20—C251.389 (12)
C3—C41.528 (6)C20—C211.406 (12)
C3—H30.9800C21—C221.368 (11)
C4—C51.506 (6)C21—H210.9300
C4—H4A0.9700C22—C231.365 (9)
C4—H4B0.9700C22—H220.9300
C5—H5A0.9600C23—H230.9300
C5—H5B0.9600C24—C251.330 (14)
C5—H5C0.9600C24—H240.9300
C6—H6A0.9600C25—H250.9300
C6—H6B0.9600
O3—Cu1—N190.5 (2)N1—C7—H7118.0
O3—Cu1—O1165.3 (2)C8—C7—H7118.0
N1—Cu1—O183.7 (2)C13—C8—C9120.0 (7)
O3—Cu1—N292.5 (2)C13—C8—C7117.6 (8)
N1—Cu1—N2177.0 (3)C9—C8—C7122.4 (7)
O1—Cu1—N293.4 (2)O3—C9—C8124.1 (7)
O3—Cu1—N392.42 (19)O3—C9—C10119.0 (8)
N1—Cu1—N3100.6 (2)C8—C9—C10116.9 (7)
O1—Cu1—N3101.9 (2)C11—C10—C9121.9 (8)
N2—Cu1—N379.1 (3)C11—C10—H10119.0
C7—N1—C2122.5 (7)C9—C10—H10119.0
C7—N1—Cu1122.0 (5)C10—C11—C12120.2 (8)
C2—N1—Cu1113.8 (4)C10—C11—H11119.9
C14—N2—C18115.6 (7)C12—C11—H11119.9
C14—N2—Cu1127.3 (7)C13—C12—C11120.0 (8)
C18—N2—Cu1116.9 (6)C13—C12—Br1120.5 (7)
C23—N3—C19115.9 (7)C11—C12—Br1119.5 (7)
C23—N3—Cu1134.7 (6)C12—C13—C8120.8 (8)
C19—N3—Cu1109.0 (5)C12—C13—H13119.6
C1—O1—Cu1115.0 (5)C8—C13—H13119.6
C9—O3—Cu1119.2 (5)N2—C14—C15124.6 (9)
H26—O4—H27106.2N2—C14—H14117.7
H28—O5—H29105.7C15—C14—H14117.7
O2—C1—O1124.8 (7)C16—C15—C14119.0 (11)
O2—C1—C2118.0 (8)C16—C15—H15120.5
O1—C1—C2117.0 (7)C14—C15—H15120.5
N1—C2—C1108.2 (6)C15—C16—C17119.6 (10)
N1—C2—C3112.9 (6)C15—C16—H16120.2
C1—C2—C3110.1 (6)C17—C16—H16120.2
N1—C2—H2108.5C16—C17—C18117.6 (10)
C1—C2—H2108.5C16—C17—C24124.6 (11)
C3—C2—H2108.5C18—C17—C24117.8 (11)
C6—C3—C4112.8 (7)N2—C18—C17123.7 (9)
C6—C3—C2112.7 (6)N2—C18—C19116.3 (8)
C4—C3—C2110.4 (6)C17—C18—C19120.1 (9)
C6—C3—H3106.8N3—C19—C20125.0 (9)
C4—C3—H3106.8N3—C19—C18117.4 (7)
C2—C3—H3106.8C20—C19—C18117.6 (9)
C5—C4—C3115.6 (7)C25—C20—C19121.9 (10)
C5—C4—H4A108.4C25—C20—C21122.3 (11)
C3—C4—H4A108.4C19—C20—C21115.7 (9)
C5—C4—H4B108.4C22—C21—C20119.2 (10)
C3—C4—H4B108.4C22—C21—H21120.4
H4A—C4—H4B107.4C20—C21—H21120.4
C4—C5—H5A109.5C23—C22—C21119.4 (10)
C4—C5—H5B109.5C23—C22—H22120.3
H5A—C5—H5B109.5C21—C22—H22120.3
C4—C5—H5C109.5N3—C23—C22124.7 (9)
H5A—C5—H5C109.5N3—C23—H23117.7
H5B—C5—H5C109.5C22—C23—H23117.7
C3—C6—H6A109.5C25—C24—C17122.2 (11)
C3—C6—H6B109.5C25—C24—H24118.9
H6A—C6—H6B109.5C17—C24—H24118.9
C3—C6—H6C109.5C24—C25—C20120.4 (11)
H6A—C6—H6C109.5C24—C25—H25119.8
H6B—C6—H6C109.5C20—C25—H25119.8
N1—C7—C8124.1 (8)
O3—Cu1—N1—C738.3 (6)Cu1—O3—C9—C828.3 (9)
O1—Cu1—N1—C7155.2 (6)Cu1—O3—C9—C10153.4 (5)
N2—Cu1—N1—C7139 (5)C13—C8—C9—O3176.7 (7)
N3—Cu1—N1—C754.2 (7)C7—C8—C9—O35.4 (11)
O3—Cu1—N1—C2156.3 (5)C13—C8—C9—C105.0 (10)
O1—Cu1—N1—C210.2 (5)C7—C8—C9—C10172.9 (7)
N2—Cu1—N1—C226 (5)O3—C9—C10—C11176.1 (7)
N3—Cu1—N1—C2111.1 (5)C8—C9—C10—C115.6 (11)
O3—Cu1—N2—C1492.1 (6)C9—C10—C11—C121.4 (12)
N1—Cu1—N2—C1491 (5)C10—C11—C12—C133.4 (11)
O1—Cu1—N2—C1474.5 (6)C10—C11—C12—Br1177.4 (6)
N3—Cu1—N2—C14175.9 (6)C11—C12—C13—C83.8 (11)
O3—Cu1—N2—C1883.0 (5)Br1—C12—C13—C8177.0 (5)
N1—Cu1—N2—C1894 (5)C9—C8—C13—C120.5 (10)
O1—Cu1—N2—C18110.5 (5)C7—C8—C13—C12177.5 (6)
N3—Cu1—N2—C189.0 (5)C18—N2—C14—C151.7 (11)
O3—Cu1—N3—C2390.0 (7)Cu1—N2—C14—C15173.4 (7)
N1—Cu1—N3—C231.0 (7)N2—C14—C15—C160.9 (14)
O1—Cu1—N3—C2386.7 (7)C14—C15—C16—C170.4 (14)
N2—Cu1—N3—C23177.9 (7)C15—C16—C17—C180.9 (14)
O3—Cu1—N3—C1982.0 (5)C15—C16—C17—C24179.7 (9)
N1—Cu1—N3—C19173.0 (5)C14—N2—C18—C172.3 (11)
O1—Cu1—N3—C19101.3 (5)Cu1—N2—C18—C17173.4 (6)
N2—Cu1—N3—C1910.1 (5)C14—N2—C18—C19177.6 (6)
O3—Cu1—O1—C166.4 (12)Cu1—N2—C18—C196.7 (8)
N1—Cu1—O1—C11.0 (6)C16—C17—C18—N21.9 (13)
N2—Cu1—O1—C1179.9 (6)C24—C17—C18—N2179.3 (8)
N3—Cu1—O1—C1100.6 (6)C16—C17—C18—C19178.0 (7)
N1—Cu1—O3—C942.5 (5)C24—C17—C18—C190.8 (12)
O1—Cu1—O3—C9109.1 (10)C23—N3—C19—C201.1 (11)
N2—Cu1—O3—C9137.3 (5)Cu1—N3—C19—C20172.5 (6)
N3—Cu1—O3—C958.1 (5)C23—N3—C19—C18176.6 (6)
Cu1—O1—C1—O2175.7 (7)Cu1—N3—C19—C189.7 (7)
Cu1—O1—C1—C28.3 (9)N2—C18—C19—N33.1 (9)
C7—N1—C2—C1149.3 (7)C17—C18—C19—N3176.8 (7)
Cu1—N1—C2—C116.0 (7)N2—C18—C19—C20179.0 (7)
C7—N1—C2—C388.5 (8)C17—C18—C19—C201.1 (11)
Cu1—N1—C2—C3106.2 (5)N3—C19—C20—C25177.4 (8)
O2—C1—C2—N1167.9 (7)C18—C19—C20—C250.3 (12)
O1—C1—C2—N115.8 (10)N3—C19—C20—C210.6 (11)
O2—C1—C2—C368.2 (10)C18—C19—C20—C21178.3 (7)
O1—C1—C2—C3108.0 (8)C25—C20—C21—C22176.4 (9)
N1—C2—C3—C672.6 (8)C19—C20—C21—C221.6 (12)
C1—C2—C3—C6166.3 (8)C20—C21—C22—C230.9 (14)
N1—C2—C3—C454.6 (8)C19—N3—C23—C222.0 (11)
C1—C2—C3—C466.5 (9)Cu1—N3—C23—C22169.6 (6)
C6—C3—C4—C561.5 (9)C21—C22—C23—N31.0 (13)
C2—C3—C4—C5171.4 (6)C16—C17—C24—C25178.9 (11)
C2—N1—C7—C8177.8 (6)C18—C17—C24—C250.1 (15)
Cu1—N1—C7—C818.1 (10)C17—C24—C25—C200.9 (18)
N1—C7—C8—C13170.6 (7)C19—C20—C25—C240.6 (17)
N1—C7—C8—C911.5 (11)C21—C20—C25—C24177.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H28···O10.852.062.904 (8)174
O5—H29···O40.851.872.708 (10)168
O4—H26···O5i0.852.062.853 (8)156
O4—H27···O2ii0.852.022.746 (7)143
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C13H14BrNO3)(C12H8N2)]·2H2O
Mr591.94
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.6184 (18), 6.0520 (16), 19.777 (3)
β (°) 93.481 (2)
V3)1268.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.65 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.296, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
6692, 4255, 2269
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.074, 0.96
No. of reflections4255
No. of parameters318
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.26
Absolute structureFlack (1983), 1785 Friedel pairs
Absolute structure parameter0.054 (14)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H28···O10.852.062.904 (8)174.4
O5—H29···O40.851.872.708 (10)168.3
O4—H26···O5i0.852.062.853 (8)155.5
O4—H27···O2ii0.852.022.746 (7)142.7
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y+1, z.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X.-Z., Zhang, S.-H., Liu, Z., Li, G.-Z. & Jin, L.-X. (2007). Acta Cryst. E63, m529–m531.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, Y. M., Zhang, S. H., Zhou, Z. Y. & Zhong, X. X. (2003). Chin. J. Struct. Chem. 22, 89–92.  CAS Google Scholar
First citationKettmann, V., Frešová, E., Bláhová, M. & Krätsmár-Šmogrovič, J. (1993). Acta Cryst. C49, 1932–1934.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, L. Z., Jing, B. Q., Li, L. W. & Xu, T. (2006). Z. Kristallogr. 221, 520–522.  CAS Google Scholar
First citationRoyles, B. J. L. & Sherrington, D. C. (2000). J. Mater. Chem. 10, 2035–2041.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-H. (2006). Acta Cryst. E62, m3062–m3064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517–520.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds