Download citation
Download citation
link to html
The molecule of the title compound, C21H20ClN5O, has a planar bicyclic imidazolo[5,4-d]pyrimidine core. The planes of the phenyl and 4-chloro­phenyl substituents form angles of 48.24 (11) and 71.34 (8)°, respectively, with the imidazolopyrimidine plane. The structure is stabilized by weak inter­molecular C—H...N and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058187/bt2605sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058187/bt2605Isup2.hkl
Contains datablock I

CCDC reference: 672961

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.051
  • wR factor = 0.126
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for N5 - C20 .. 6.98 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Substituted purine derivatives may be used as potential biologically active compounds or pharmaceuticals (Xu et al., 1995). In recent years we have been developing aza-Wittig reaction for synthesis of heterocycles (Ding et al., 2004). In this context, we have synthesized the title compound, 1-(4-chlorophenyl)-2-(diethylamino)-9-phenyl-1H-purin-6(9H)-one, C21H20ClN5O; herein we report its crystal and molecular structure.

In the molecule (Fig. 1), the bond lengths and angles are unexceptional. The bicyclic imidazolo[5,4-d]pyrimidine system is almost planar with maximum deviation of -0.023 (2) Å for atom C(8), and the angle between plane N1—C7—N2—C8—C9 and N3—C9—C8—C11—N4—C10 is equal to 2.40 (9)°. The torsion angles C9—C8—C11—O1 and O1—C11—N4—C10 are equal to -173.96 (17)° and 177.36 (16)° respectively. The planes of the phenyl rings C1—C6 and C12—C17 are twisted to imidazolo[5,4-d]pyrimidine system with dihedral angles of 48.24 (11)° and 71.34 (8)° respectively.

As can be seen from the packing diagram (Fig. 2), the structure stabilized by the interactions of C—H···N, C—H···O hydrogen bonds. (Table 1).

Related literature top

Related preparation and biological activity is described by Xu et al. (1995). For related literature, see: Ding et al. (2004).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme.
[Figure 2] Fig. 2. The packing in the crystal structure, showing the C—H···O hydrogen bonds as dashed lines.
1-(4-Chlorophenyl)-2-diethylamino-9-phenyl-1H-purin-6(9H)-one top
Crystal data top
C21H20ClN5OF(000) = 824
Mr = 393.87Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2876 reflections
a = 13.4911 (12) Åθ = 2.4–24.6°
b = 8.3947 (8) ŵ = 0.22 mm1
c = 17.4615 (16) ÅT = 292 K
β = 100.674 (2)°Block, colorless
V = 1943.4 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4431 independent reflections
Radiation source: fine-focus sealed tube2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1716
Tmin = 0.937, Tmax = 0.958k = 910
12370 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
4431 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H20ClN5OV = 1943.4 (3) Å3
Mr = 393.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4911 (12) ŵ = 0.22 mm1
b = 8.3947 (8) ÅT = 292 K
c = 17.4615 (16) Å0.30 × 0.20 × 0.20 mm
β = 100.674 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4431 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2979 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.958Rint = 0.060
12370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.94Δρmax = 0.25 e Å3
4431 reflectionsΔρmin = 0.28 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58415 (14)0.3486 (3)0.20261 (13)0.0582 (5)
H10.55960.39820.15530.070*
C20.53522 (17)0.3669 (3)0.26485 (18)0.0746 (7)
H20.47650.42740.25900.089*
C30.5719 (2)0.2976 (3)0.33449 (17)0.0799 (8)
H30.53920.31200.37640.096*
C40.65702 (19)0.2066 (3)0.34277 (13)0.0803 (8)
H40.68190.15890.39050.096*
C50.70677 (15)0.1844 (3)0.28114 (12)0.0604 (6)
H50.76450.12180.28700.073*
C60.66952 (12)0.2562 (2)0.21152 (10)0.0415 (4)
C70.67228 (13)0.1855 (2)0.07248 (11)0.0487 (5)
H70.60300.17060.05820.058*
C80.82762 (12)0.1991 (2)0.06945 (10)0.0387 (4)
C90.81868 (12)0.2404 (2)0.14362 (10)0.0374 (4)
C100.98288 (12)0.2842 (2)0.18586 (10)0.0374 (4)
C110.92328 (13)0.2069 (2)0.04677 (10)0.0380 (4)
C121.09679 (12)0.2904 (2)0.08956 (10)0.0374 (4)
C131.15729 (13)0.1696 (2)0.07040 (10)0.0420 (4)
H131.13720.06390.07220.050*
C141.24807 (13)0.2069 (2)0.04857 (10)0.0471 (5)
H141.28970.12680.03570.056*
C151.27571 (13)0.3642 (2)0.04617 (10)0.0459 (5)
C161.21545 (13)0.4855 (2)0.06383 (10)0.0453 (4)
H161.23520.59120.06110.054*
C171.12478 (13)0.4475 (2)0.08573 (10)0.0418 (4)
H171.08290.52790.09780.050*
C181.15040 (13)0.2194 (2)0.26058 (11)0.0473 (5)
H18A1.14900.14540.21770.057*
H18B1.14310.15790.30630.057*
C191.25144 (15)0.3020 (3)0.27618 (14)0.0743 (7)
H19A1.25860.36570.23190.111*
H19B1.30420.22370.28540.111*
H19C1.25580.36900.32120.111*
C201.04109 (15)0.4238 (3)0.30744 (12)0.0630 (6)
H20A0.98790.49870.28720.076*
H20B1.10060.48530.32910.076*
C211.00919 (19)0.3313 (3)0.37215 (13)0.0861 (8)
H21A0.94730.27630.35260.129*
H21B0.99920.40300.41290.129*
H21C1.06060.25540.39240.129*
Cl11.38876 (4)0.41047 (8)0.01601 (3)0.0754 (2)
N10.71771 (10)0.23172 (18)0.14620 (8)0.0428 (4)
N20.73402 (11)0.16444 (19)0.02426 (9)0.0472 (4)
N30.89291 (10)0.28148 (17)0.20361 (8)0.0408 (4)
N41.00083 (10)0.25229 (16)0.11090 (8)0.0370 (3)
N51.06403 (11)0.32839 (18)0.24143 (8)0.0437 (4)
O10.94322 (9)0.18633 (15)0.01760 (7)0.0475 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0452 (12)0.0614 (14)0.0699 (14)0.0045 (9)0.0153 (10)0.0086 (11)
C20.0559 (14)0.0691 (16)0.108 (2)0.0071 (11)0.0394 (14)0.0124 (15)
C30.0720 (17)0.103 (2)0.0773 (18)0.0217 (15)0.0456 (15)0.0334 (16)
C40.0768 (18)0.123 (2)0.0439 (13)0.0107 (15)0.0184 (12)0.0016 (13)
C50.0483 (12)0.0885 (16)0.0450 (12)0.0071 (11)0.0100 (9)0.0057 (11)
C60.0313 (9)0.0529 (11)0.0415 (10)0.0029 (8)0.0097 (8)0.0020 (8)
C70.0340 (10)0.0687 (13)0.0414 (11)0.0069 (9)0.0013 (8)0.0012 (9)
C80.0345 (9)0.0461 (11)0.0346 (9)0.0039 (7)0.0038 (7)0.0010 (8)
C90.0335 (9)0.0459 (11)0.0320 (9)0.0021 (7)0.0042 (7)0.0013 (8)
C100.0362 (9)0.0396 (10)0.0359 (10)0.0009 (7)0.0053 (8)0.0007 (8)
C110.0400 (10)0.0393 (10)0.0347 (10)0.0021 (7)0.0071 (8)0.0003 (8)
C120.0328 (9)0.0450 (11)0.0344 (9)0.0034 (7)0.0066 (7)0.0001 (8)
C130.0430 (10)0.0409 (10)0.0420 (10)0.0016 (8)0.0074 (8)0.0006 (8)
C140.0383 (10)0.0579 (13)0.0456 (11)0.0040 (9)0.0094 (8)0.0054 (9)
C150.0325 (9)0.0667 (13)0.0382 (10)0.0076 (9)0.0060 (8)0.0016 (9)
C160.0463 (11)0.0475 (11)0.0412 (10)0.0110 (9)0.0060 (8)0.0039 (8)
C170.0427 (10)0.0413 (11)0.0413 (10)0.0006 (8)0.0076 (8)0.0007 (8)
C180.0380 (10)0.0579 (12)0.0443 (11)0.0025 (8)0.0031 (8)0.0064 (9)
C190.0405 (12)0.0941 (19)0.0826 (18)0.0129 (11)0.0036 (12)0.0131 (13)
C200.0507 (12)0.0825 (16)0.0513 (13)0.0017 (11)0.0023 (10)0.0180 (11)
C210.0800 (17)0.133 (2)0.0433 (13)0.0161 (16)0.0075 (12)0.0050 (14)
Cl10.0437 (3)0.1085 (5)0.0790 (4)0.0164 (3)0.0242 (3)0.0026 (3)
N10.0312 (8)0.0601 (10)0.0369 (8)0.0022 (7)0.0060 (6)0.0012 (7)
N20.0385 (9)0.0640 (11)0.0376 (8)0.0082 (7)0.0032 (7)0.0024 (7)
N30.0337 (8)0.0550 (10)0.0334 (8)0.0005 (7)0.0057 (6)0.0015 (7)
N40.0323 (8)0.0443 (9)0.0346 (8)0.0036 (6)0.0068 (6)0.0018 (6)
N50.0367 (8)0.0555 (10)0.0364 (8)0.0009 (7)0.0002 (6)0.0062 (7)
O10.0461 (7)0.0629 (9)0.0353 (7)0.0066 (6)0.0125 (6)0.0058 (6)
Geometric parameters (Å, º) top
C1—C61.373 (3)C12—C131.381 (2)
C1—C21.381 (3)C12—N41.448 (2)
C1—H10.9300C13—C141.384 (2)
C2—C31.356 (4)C13—H130.9300
C2—H20.9300C14—C151.375 (3)
C3—C41.364 (3)C14—H140.9300
C3—H30.9300C15—C161.373 (3)
C4—C51.382 (3)C15—Cl11.7469 (17)
C4—H40.9300C16—C171.385 (2)
C5—C61.366 (3)C16—H160.9300
C5—H50.9300C17—H170.9300
C6—N11.428 (2)C18—N51.470 (2)
C7—N21.302 (2)C18—C191.508 (3)
C7—N11.375 (2)C18—H18A0.9700
C7—H70.9300C18—H18B0.9700
C8—C91.367 (2)C19—H19A0.9600
C8—N21.390 (2)C19—H19B0.9600
C8—C111.420 (2)C19—H19C0.9600
C9—N31.353 (2)C20—N51.482 (2)
C9—N11.373 (2)C20—C211.498 (3)
C10—N31.307 (2)C20—H20A0.9700
C10—N51.373 (2)C20—H20B0.9700
C10—N41.400 (2)C21—H21A0.9600
C11—O11.2155 (19)C21—H21B0.9600
C11—N41.435 (2)C21—H21C0.9600
C12—C171.377 (2)
C6—C1—C2119.1 (2)C16—C15—Cl1119.28 (15)
C6—C1—H1120.4C14—C15—Cl1118.65 (15)
C2—C1—H1120.4C15—C16—C17118.74 (17)
C3—C2—C1120.6 (2)C15—C16—H16120.6
C3—C2—H2119.7C17—C16—H16120.6
C1—C2—H2119.7C12—C17—C16119.91 (16)
C2—C3—C4119.7 (2)C12—C17—H17120.0
C2—C3—H3120.2C16—C17—H17120.0
C4—C3—H3120.2N5—C18—C19114.00 (17)
C3—C4—C5120.9 (2)N5—C18—H18A108.8
C3—C4—H4119.6C19—C18—H18A108.8
C5—C4—H4119.6N5—C18—H18B108.8
C6—C5—C4118.8 (2)C19—C18—H18B108.8
C6—C5—H5120.6H18A—C18—H18B107.6
C4—C5—H5120.6C18—C19—H19A109.5
C5—C6—C1120.82 (18)C18—C19—H19B109.5
C5—C6—N1120.01 (16)H19A—C19—H19B109.5
C1—C6—N1119.15 (17)C18—C19—H19C109.5
N2—C7—N1114.60 (15)H19A—C19—H19C109.5
N2—C7—H7122.7H19B—C19—H19C109.5
N1—C7—H7122.7N5—C20—C21115.92 (19)
C9—C8—N2111.13 (15)N5—C20—H20A108.3
C9—C8—C11119.79 (15)C21—C20—H20A108.3
N2—C8—C11128.91 (16)N5—C20—H20B108.3
N3—C9—C8127.98 (15)C21—C20—H20B108.3
N3—C9—N1125.78 (15)H20A—C20—H20B107.4
C8—C9—N1106.24 (14)C20—C21—H21A109.5
N3—C10—N5119.41 (15)C20—C21—H21B109.5
N3—C10—N4123.17 (15)H21A—C21—H21B109.5
N5—C10—N4117.32 (14)C20—C21—H21C109.5
O1—C11—C8128.30 (16)H21A—C21—H21C109.5
O1—C11—N4120.33 (15)H21B—C21—H21C109.5
C8—C11—N4111.31 (14)C9—N1—C7104.90 (14)
C17—C12—C13120.78 (16)C9—N1—C6128.28 (14)
C17—C12—N4119.37 (15)C7—N1—C6126.74 (14)
C13—C12—N4119.80 (15)C7—N2—C8103.13 (15)
C12—C13—C14119.57 (17)C10—N3—C9114.05 (14)
C12—C13—H13120.2C10—N4—C11123.56 (13)
C14—C13—H13120.2C10—N4—C12121.07 (13)
C15—C14—C13118.96 (17)C11—N4—C12114.53 (13)
C15—C14—H14120.5C10—N5—C18119.17 (15)
C13—C14—H14120.5C10—N5—C20116.20 (15)
C16—C15—C14122.02 (16)C18—N5—C20115.46 (15)
C6—C1—C2—C31.4 (3)C5—C6—N1—C947.3 (3)
C1—C2—C3—C41.1 (4)C1—C6—N1—C9134.52 (19)
C2—C3—C4—C50.2 (4)C5—C6—N1—C7128.9 (2)
C3—C4—C5—C60.4 (4)C1—C6—N1—C749.2 (3)
C4—C5—C6—C10.1 (3)N1—C7—N2—C80.1 (2)
C4—C5—C6—N1178.23 (19)C9—C8—N2—C70.1 (2)
C2—C1—C6—C50.8 (3)C11—C8—N2—C7175.35 (18)
C2—C1—C6—N1177.37 (18)N5—C10—N3—C9178.26 (15)
N2—C8—C9—N3179.92 (17)N4—C10—N3—C91.8 (2)
C11—C8—C9—N34.4 (3)C8—C9—N3—C101.7 (3)
N2—C8—C9—N10.2 (2)N1—C9—N3—C10178.59 (16)
C11—C8—C9—N1175.87 (15)N3—C10—N4—C112.7 (3)
C9—C8—C11—O1173.96 (17)N5—C10—N4—C11179.20 (15)
N2—C8—C11—O10.9 (3)N3—C10—N4—C12166.22 (15)
C9—C8—C11—N43.1 (2)N5—C10—N4—C1210.3 (2)
N2—C8—C11—N4177.92 (16)O1—C11—N4—C10177.36 (16)
C17—C12—C13—C141.3 (3)C8—C11—N4—C100.0 (2)
N4—C12—C13—C14178.75 (15)O1—C11—N4—C127.8 (2)
C12—C13—C14—C150.3 (3)C8—C11—N4—C12169.53 (14)
C13—C14—C15—C160.8 (3)C17—C12—N4—C1066.8 (2)
C13—C14—C15—Cl1178.29 (14)C13—C12—N4—C10115.73 (18)
C14—C15—C16—C170.9 (3)C17—C12—N4—C11103.11 (18)
Cl1—C15—C16—C17178.35 (13)C13—C12—N4—C1174.41 (19)
C13—C12—C17—C161.2 (3)N3—C10—N5—C18124.16 (18)
N4—C12—C17—C16178.68 (15)N4—C10—N5—C1859.2 (2)
C15—C16—C17—C120.1 (3)N3—C10—N5—C2021.3 (2)
N3—C9—N1—C7179.88 (17)N4—C10—N5—C20155.38 (16)
C8—C9—N1—C70.12 (19)C19—C18—N5—C10142.09 (18)
N3—C9—N1—C63.0 (3)C19—C18—N5—C2072.2 (2)
C8—C9—N1—C6176.78 (16)C21—C20—N5—C1082.7 (2)
N2—C7—N1—C90.0 (2)C21—C20—N5—C1864.0 (2)
N2—C7—N1—C6176.93 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···N30.962.573.096 (3)115
C16—H16···N2i0.932.613.443 (2)149
C13—H13···O1ii0.932.473.340 (2)155
C3—H3···O1iii0.932.453.371 (3)172
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H20ClN5O
Mr393.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)13.4911 (12), 8.3947 (8), 17.4615 (16)
β (°) 100.674 (2)
V3)1943.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.937, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12370, 4431, 2979
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.126, 0.94
No. of reflections4431
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus (Bruker, 2001, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···N30.962.573.096 (3)114.7
C16—H16···N2i0.932.613.443 (2)148.7
C13—H13···O1ii0.932.473.340 (2)155.2
C3—H3···O1iii0.932.453.371 (3)172.2
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z; (iii) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds