Download citation
Download citation
link to html
The crystal structure of the title compound, C20H23N3OS, is stabilized by inter­molecular C—H...O hydrogen bonds. The mol­ecule contains a planar heterocyclic ring system, which forms a dihedral angle of 65.87 (1)° with the adjacent tolyl ring. The piperidinyl ring has a distored chair conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057145/bt2600sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057145/bt2600Isup2.hkl
Contains datablock I

CCDC reference: 672931

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.069
  • wR factor = 0.168
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.78 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.09 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The derivatives of heterocycles containing the thienopyrimidine system, which are well known bioisosteres of quinazolines, are of great importance because of their remarkable biological properties (Walter, 1999a; Walter, 1999b; Ding et al., 2004). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-Wittig reaction at room temperature. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Hu et al., 2006; Hu et al., 2007). The title compound (Fig. 1) may be used as a new precursor for obtaining bioactive molecules. In the molecule, the bond lengths and angles are unexceptional. The thienopyrimidine ring system is almost planar, with a maximum deviation of 0.046 Å for atom N3. The tolyl ring is twisted with respect to it [dihedral angle 65.87 (1)°]. The piperidinyl ring in shows a distored chair conformation [ϕ =187 (9)° and θ = 180.0 (3)°, puckering amplitude = 0.571 (3) Å]. Intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2) are effective in stabilizing the crystal structure.

Related literature top

For preparation and biological activity, see: Walter (1999a,b). For related literature, see: Ding et al. (2004); Hu et al. (2006, 2007).

Experimental top

To a solution of the ethyl 2-((p-tolylimino)methyleneamino)-5-ethylthiophene-3-carboxylate(II) (3 mmol) in dichloromethane (5 ml) was added piperidine(3 mmol). After stirring the reaction mixture for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 4 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 86%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 200; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme.
[Figure 2] Fig. 2. The packing in the crystal structure, showing the C—H···O hydrogen bonds as dashed lines.
6-Ethyl-2-(piperidin-1-yl)-3-p-tolylthieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C20H23N3OSF(000) = 752
Mr = 353.47Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2891 reflections
a = 6.5376 (4) Åθ = 2.6–22.9°
b = 18.6415 (12) ŵ = 0.18 mm1
c = 15.5507 (10) ÅT = 296 K
β = 94.967 (1)°Block, colorless
V = 1888.1 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3683 independent reflections
Radiation source: fine-focus sealed tube2714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.947, Tmax = 0.964k = 2222
16199 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.072P)2 + 0.7436P]
where P = (Fo2 + 2Fc2)/3
3683 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H23N3OSV = 1888.1 (2) Å3
Mr = 353.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.5376 (4) ŵ = 0.18 mm1
b = 18.6415 (12) ÅT = 296 K
c = 15.5507 (10) Å0.30 × 0.20 × 0.20 mm
β = 94.967 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2714 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.964Rint = 0.042
16199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
3683 reflectionsΔρmin = 0.18 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6795 (5)0.80842 (15)0.33985 (18)0.0534 (7)
H1A0.76090.82830.38930.064*
H1B0.76460.77470.31160.064*
C20.4956 (5)0.76995 (16)0.3697 (2)0.0663 (9)
H2A0.54120.73320.41120.080*
H2B0.42090.74660.32080.080*
C30.3549 (5)0.82198 (17)0.4107 (2)0.0698 (9)
H3A0.42300.84050.46400.084*
H3B0.23110.79730.42440.084*
C40.2989 (5)0.88368 (17)0.3490 (2)0.0667 (9)
H4A0.21490.86560.29920.080*
H4B0.21860.91870.37760.080*
C50.4870 (5)0.91967 (14)0.3192 (2)0.0578 (8)
H5A0.44610.95700.27780.069*
H5B0.56540.94170.36810.069*
C60.7593 (4)0.89267 (13)0.22814 (16)0.0416 (6)
C70.9598 (4)0.97979 (14)0.18017 (17)0.0474 (7)
C81.0504 (4)0.93702 (14)0.12372 (17)0.0456 (6)
C90.9877 (4)0.86358 (14)0.11460 (16)0.0438 (6)
C100.7312 (4)0.77628 (13)0.15011 (16)0.0419 (6)
C110.8398 (5)0.71284 (14)0.16331 (18)0.0539 (7)
H110.97590.71350.18630.065*
C120.7433 (6)0.64854 (15)0.14186 (19)0.0632 (9)
H120.81570.60590.15130.076*
C130.5423 (6)0.64604 (15)0.10678 (18)0.0607 (9)
C140.4362 (5)0.70978 (15)0.09467 (18)0.0551 (7)
H140.29970.70900.07220.066*
C150.5298 (4)0.77485 (14)0.11540 (17)0.0468 (7)
H150.45720.81740.10600.056*
C160.4395 (8)0.57519 (17)0.0815 (3)0.0977 (14)
H16A0.30440.57420.10130.147*
H16B0.51940.53640.10750.147*
H16C0.42970.57010.01990.147*
C171.1956 (5)0.97442 (16)0.07732 (19)0.0571 (8)
H171.27130.95260.03660.068*
C181.2124 (5)1.04385 (16)0.09795 (19)0.0572 (8)
C191.3451 (5)1.10055 (18)0.0615 (2)0.0711 (9)
H19A1.40761.08050.01250.085*
H19B1.25841.14020.04050.085*
C201.5056 (7)1.1280 (3)0.1226 (3)0.1155 (16)
H20A1.44511.15100.16940.173*
H20B1.58721.16210.09430.173*
H20C1.59111.08910.14450.173*
N10.6137 (3)0.86650 (10)0.27945 (13)0.0433 (5)
N20.8165 (4)0.95937 (11)0.23473 (14)0.0489 (6)
N30.8313 (3)0.84460 (10)0.16904 (13)0.0412 (5)
O11.0499 (3)0.82006 (10)0.06466 (13)0.0585 (5)
S11.05291 (14)1.06658 (4)0.17733 (6)0.0656 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0629 (19)0.0562 (17)0.0420 (15)0.0139 (14)0.0093 (14)0.0072 (13)
C20.090 (2)0.0512 (17)0.0617 (19)0.0066 (16)0.0285 (18)0.0191 (14)
C30.074 (2)0.076 (2)0.065 (2)0.0014 (17)0.0359 (18)0.0127 (16)
C40.064 (2)0.0637 (19)0.077 (2)0.0125 (16)0.0345 (17)0.0083 (16)
C50.069 (2)0.0400 (15)0.069 (2)0.0081 (13)0.0288 (16)0.0006 (13)
C60.0447 (15)0.0396 (14)0.0414 (14)0.0035 (11)0.0091 (12)0.0025 (11)
C70.0486 (17)0.0454 (15)0.0491 (16)0.0027 (12)0.0098 (13)0.0015 (12)
C80.0426 (16)0.0502 (15)0.0448 (15)0.0008 (12)0.0087 (13)0.0002 (12)
C90.0403 (15)0.0491 (15)0.0422 (14)0.0042 (12)0.0048 (12)0.0008 (12)
C100.0521 (17)0.0357 (13)0.0393 (14)0.0015 (11)0.0127 (12)0.0002 (10)
C110.066 (2)0.0466 (16)0.0494 (16)0.0115 (14)0.0086 (14)0.0011 (12)
C120.098 (3)0.0391 (16)0.0536 (18)0.0144 (16)0.0148 (18)0.0015 (13)
C130.098 (3)0.0426 (16)0.0426 (16)0.0129 (16)0.0137 (17)0.0034 (12)
C140.062 (2)0.0535 (17)0.0499 (17)0.0109 (14)0.0076 (14)0.0033 (13)
C150.0536 (18)0.0393 (14)0.0487 (16)0.0024 (12)0.0108 (13)0.0020 (11)
C160.157 (4)0.052 (2)0.082 (3)0.024 (2)0.001 (3)0.0102 (18)
C170.0532 (19)0.0645 (19)0.0559 (18)0.0077 (14)0.0190 (15)0.0054 (14)
C180.0542 (19)0.0625 (18)0.0564 (18)0.0115 (14)0.0141 (15)0.0009 (14)
C190.064 (2)0.075 (2)0.076 (2)0.0196 (17)0.0196 (18)0.0002 (18)
C200.092 (3)0.134 (4)0.118 (3)0.052 (3)0.009 (3)0.006 (3)
N10.0529 (14)0.0338 (11)0.0455 (12)0.0061 (9)0.0179 (10)0.0031 (9)
N20.0575 (15)0.0391 (12)0.0526 (13)0.0017 (10)0.0191 (11)0.0034 (10)
N30.0429 (13)0.0393 (11)0.0425 (12)0.0025 (9)0.0097 (10)0.0003 (9)
O10.0608 (13)0.0567 (12)0.0613 (12)0.0000 (10)0.0251 (10)0.0141 (10)
S10.0775 (6)0.0468 (4)0.0768 (6)0.0131 (4)0.0311 (5)0.0058 (4)
Geometric parameters (Å, º) top
C1—N11.473 (3)C10—C151.379 (4)
C1—C21.507 (4)C10—C111.385 (4)
C1—H1A0.9700C10—N31.450 (3)
C1—H1B0.9700C11—C121.382 (4)
C2—C31.516 (4)C11—H110.9300
C2—H2A0.9700C12—C131.379 (5)
C2—H2B0.9700C12—H120.9300
C3—C41.522 (4)C13—C141.380 (4)
C3—H3A0.9700C13—C161.518 (4)
C3—H3B0.9700C14—C151.384 (4)
C4—C51.508 (4)C14—H140.9300
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—H16A0.9600
C5—N11.463 (3)C16—H16B0.9600
C5—H5A0.9700C16—H16C0.9600
C5—H5B0.9700C17—C181.336 (4)
C6—N21.300 (3)C17—H170.9300
C6—N11.383 (3)C18—C191.509 (4)
C6—N31.394 (3)C18—S11.736 (3)
C7—C81.359 (4)C19—C201.447 (5)
C7—N21.371 (3)C19—H19A0.9700
C7—S11.731 (3)C19—H19B0.9700
C8—C171.424 (4)C20—H20A0.9600
C8—C91.433 (4)C20—H20B0.9600
C9—O11.217 (3)C20—H20C0.9600
C9—N31.427 (3)
N1—C1—C2110.4 (2)C12—C11—H11120.4
N1—C1—H1A109.6C10—C11—H11120.4
C2—C1—H1A109.6C13—C12—C11121.6 (3)
N1—C1—H1B109.6C13—C12—H12119.2
C2—C1—H1B109.6C11—C12—H12119.2
H1A—C1—H1B108.1C12—C13—C14118.4 (3)
C1—C2—C3110.8 (3)C12—C13—C16121.1 (3)
C1—C2—H2A109.5C14—C13—C16120.5 (4)
C3—C2—H2A109.5C13—C14—C15121.1 (3)
C1—C2—H2B109.5C13—C14—H14119.5
C3—C2—H2B109.5C15—C14—H14119.5
H2A—C2—H2B108.1C10—C15—C14119.7 (3)
C2—C3—C4109.8 (2)C10—C15—H15120.1
C2—C3—H3A109.7C14—C15—H15120.1
C4—C3—H3A109.7C13—C16—H16A109.5
C2—C3—H3B109.7C13—C16—H16B109.5
C4—C3—H3B109.7H16A—C16—H16B109.5
H3A—C3—H3B108.2C13—C16—H16C109.5
C5—C4—C3111.8 (3)H16A—C16—H16C109.5
C5—C4—H4A109.2H16B—C16—H16C109.5
C3—C4—H4A109.2C18—C17—C8113.4 (3)
C5—C4—H4B109.2C18—C17—H17123.3
C3—C4—H4B109.2C8—C17—H17123.3
H4A—C4—H4B107.9C17—C18—C19128.8 (3)
N1—C5—C4109.6 (2)C17—C18—S1111.4 (2)
N1—C5—H5A109.8C19—C18—S1119.8 (2)
C4—C5—H5A109.8C20—C19—C18114.1 (3)
N1—C5—H5B109.8C20—C19—H19A108.7
C4—C5—H5B109.8C18—C19—H19A108.7
H5A—C5—H5B108.2C20—C19—H19B108.7
N2—C6—N1120.0 (2)C18—C19—H19B108.7
N2—C6—N3123.7 (2)H19A—C19—H19B107.6
N1—C6—N3116.2 (2)C19—C20—H20A109.5
C8—C7—N2126.6 (2)C19—C20—H20B109.5
C8—C7—S1111.0 (2)H20A—C20—H20B109.5
N2—C7—S1122.4 (2)C19—C20—H20C109.5
C7—C8—C17112.8 (2)H20A—C20—H20C109.5
C7—C8—C9119.2 (2)H20B—C20—H20C109.5
C17—C8—C9128.0 (2)C6—N1—C5116.6 (2)
O1—C9—N3120.6 (2)C6—N1—C1116.7 (2)
O1—C9—C8126.3 (2)C5—N1—C1111.9 (2)
N3—C9—C8113.1 (2)C6—N2—C7115.1 (2)
C15—C10—C11120.1 (2)C6—N3—C9122.1 (2)
C15—C10—N3119.7 (2)C6—N3—C10121.7 (2)
C11—C10—N3120.2 (3)C9—N3—C10115.55 (19)
C12—C11—C10119.2 (3)C7—S1—C1891.39 (14)
N1—C1—C2—C356.8 (3)N2—C6—N1—C518.2 (4)
C1—C2—C3—C453.8 (4)N3—C6—N1—C5159.7 (2)
C2—C3—C4—C554.1 (4)N2—C6—N1—C1117.9 (3)
C3—C4—C5—N156.4 (4)N3—C6—N1—C164.3 (3)
N2—C7—C8—C17179.0 (3)C4—C5—N1—C6162.7 (2)
S1—C7—C8—C170.3 (3)C4—C5—N1—C159.3 (3)
N2—C7—C8—C93.5 (4)C2—C1—N1—C6161.9 (2)
S1—C7—C8—C9177.8 (2)C2—C1—N1—C560.0 (3)
C7—C8—C9—O1177.2 (3)N1—C6—N2—C7179.3 (2)
C17—C8—C9—O10.1 (5)N3—C6—N2—C71.6 (4)
C7—C8—C9—N30.2 (4)C8—C7—N2—C62.6 (4)
C17—C8—C9—N3177.3 (3)S1—C7—N2—C6178.8 (2)
C15—C10—C11—C120.4 (4)N2—C6—N3—C94.9 (4)
N3—C10—C11—C12177.6 (2)N1—C6—N3—C9177.4 (2)
C10—C11—C12—C130.7 (4)N2—C6—N3—C10165.7 (2)
C11—C12—C13—C141.1 (4)N1—C6—N3—C1012.0 (3)
C11—C12—C13—C16178.6 (3)O1—C9—N3—C6178.8 (2)
C12—C13—C14—C151.3 (4)C8—C9—N3—C63.7 (3)
C16—C13—C14—C15178.4 (3)O1—C9—N3—C1010.1 (3)
C11—C10—C15—C140.7 (4)C8—C9—N3—C10167.5 (2)
N3—C10—C15—C14177.9 (2)C15—C10—N3—C661.3 (3)
C13—C14—C15—C101.1 (4)C11—C10—N3—C6121.5 (3)
C7—C8—C17—C180.5 (4)C15—C10—N3—C9110.0 (3)
C9—C8—C17—C18176.7 (3)C11—C10—N3—C967.3 (3)
C8—C17—C18—C19178.5 (3)C8—C7—S1—C180.7 (2)
C8—C17—C18—S11.1 (4)N2—C7—S1—C18179.5 (2)
C17—C18—C19—C20113.6 (4)C17—C18—S1—C71.0 (3)
S1—C18—C19—C2067.0 (4)C19—C18—S1—C7178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.583.456 (4)150
C19—H19B···O1ii0.972.593.439 (4)146
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC20H23N3OS
Mr353.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.5376 (4), 18.6415 (12), 15.5507 (10)
β (°) 94.967 (1)
V3)1888.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.947, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
16199, 3683, 2714
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.168, 1.09
No. of reflections3683
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.18

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus (Bruker, 200, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.583.456 (4)150.3
C19—H19B···O1ii0.972.593.439 (4)146.1
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds