Download citation
Download citation
link to html
The conformation of the N—H bond in the title compound, C8H5Cl4NO, is syn to the 2-chloro substituent in the aromatic ring, similar to that of the 2-chloro substituent in 2,2-dichloro-N-(2-chloro­phen­yl)acetamide, the 3-chloro substituent in 2,2-dichloro-N-(3,4-dichloro­phen­yl)acetamide and the 2- and 3-chloro substituents in N-(2,3-dichloro­phen­yl)acetamide, but in contrast to the anti conformation observed with respect to the 3-chloro substituent in 2,2-dichloro-N-(3-chloro­phen­yl)acetamide. The bond parameters are similar to those in 2,2-dichloro-N-phenyl­acetamide and other acetanilides. The mol­ecules are linked into chains through N—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057054/bt2597sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057054/bt2597Isup2.hkl
Contains datablock I

CCDC reference: 672936

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.046
  • wR factor = 0.129
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C8 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the present work, the structure of N-(2,3-dichlorophenyl)-2,2- dichloroacetamide (23DCPDCA) has been determined to study the substituent effects on the structures of N-aromatic amides (Gowda et al., 2001, 2006; 2007a, b). The conformation of the N—H bond in 23DCPDCA is syn to both the 2-chloro and 3-chloro substituent (Fig. 1), similar to that of 2-chloro substituent in N-(2-chlorophenyl)-2,2- dichloroacetamide (2CPDCA)(Gowda et al., 2001), 3-chloro substituent in N-(3,4-dichlorophenyl)-2,2-dichloroacetamide (34DCPDCA) (Gowda et al., 2007b), and 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-acetamide (23DCPA)(Gowda et al., 2007a), but in contrast to the anti conformation observed with respect to the 3-chloro substituent in the N-(3-chlorophenyl)- 2,2-dichloroacetamide (3CPDCA)(Gowda et al., 2006)·The bond parameters in 23DCPDCA are similar to those in N-(phenyl)-2,2-dichloroacetamide, 2CPDCA, 3CPDCA, 34DCPDCA, 23DCPA and other acetanilides (Gowda et al., 2001, 2006; 2007a, b). The molecules in 23DCPDCA are linked into chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2001, 2006, 2007a,b); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with N—H = 0.86 Å and C—H = 0.93–0.98 Å. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Software (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(2,3-dichlorophenyl)acetamide top
Crystal data top
C8H5Cl4NOF(000) = 544
Mr = 272.93Dx = 1.663 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.674 (1) Åθ = 5.8–20.3°
b = 11.804 (2) ŵ = 9.60 mm1
c = 19.833 (3) ÅT = 299 K
β = 95.05 (1)°Needle, colourless
V = 1090.0 (3) Å30.60 × 0.08 × 0.03 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 66.9°, θmin = 4.4°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 142
Tmin = 0.322, Tmax = 0.750l = 2323
2435 measured reflections3 standard reflections every 120 min
1950 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.5313P]
where P = (Fo2 + 2Fc2)/3
1950 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C8H5Cl4NOV = 1090.0 (3) Å3
Mr = 272.93Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.674 (1) ŵ = 9.60 mm1
b = 11.804 (2) ÅT = 299 K
c = 19.833 (3) Å0.60 × 0.08 × 0.03 mm
β = 95.05 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1421 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.322, Tmax = 0.7503 standard reflections every 120 min
2435 measured reflections intensity decay: 1.0%
1950 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
1950 reflectionsΔρmin = 0.44 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.8086 (2)0.02347 (8)0.21645 (5)0.0564 (3)
Cl20.6830 (3)0.03704 (9)0.36898 (5)0.0763 (4)
Cl30.4053 (3)0.33369 (10)0.00199 (6)0.0782 (4)
Cl40.2454 (3)0.10696 (11)0.04307 (5)0.0761 (4)
O10.0589 (5)0.1713 (3)0.09146 (13)0.0714 (9)
N10.5159 (5)0.1646 (2)0.13964 (13)0.0395 (6)
H1N0.69330.16330.13120.047*
C10.4524 (6)0.1571 (3)0.20853 (15)0.0365 (7)
C20.5814 (7)0.0733 (3)0.24928 (15)0.0378 (7)
C30.5257 (8)0.0668 (3)0.31709 (17)0.0474 (8)
C40.3431 (9)0.1429 (4)0.34292 (17)0.0572 (10)
H40.30520.13820.38810.069*
C50.2162 (9)0.2260 (4)0.30237 (19)0.0587 (10)
H50.09220.27730.32030.070*
C60.2705 (8)0.2346 (3)0.23480 (18)0.0478 (8)
H60.18560.29180.20760.057*
C70.3169 (7)0.1735 (3)0.08749 (16)0.0414 (7)
C80.4369 (7)0.1891 (3)0.01915 (16)0.0454 (8)
H80.63980.16710.02270.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0591 (6)0.0535 (5)0.0558 (5)0.0144 (4)0.0003 (4)0.0054 (4)
Cl20.1161 (10)0.0611 (6)0.0478 (5)0.0047 (6)0.0142 (6)0.0150 (5)
Cl30.1027 (9)0.0732 (7)0.0587 (6)0.0169 (6)0.0076 (6)0.0143 (5)
Cl40.0814 (8)0.0907 (8)0.0537 (5)0.0051 (6)0.0080 (5)0.0211 (5)
O10.0236 (12)0.143 (3)0.0475 (14)0.0033 (14)0.0037 (10)0.0094 (17)
N10.0253 (12)0.0599 (17)0.0337 (13)0.0029 (12)0.0044 (10)0.0049 (12)
C10.0301 (15)0.0456 (17)0.0337 (15)0.0059 (13)0.0026 (12)0.0014 (13)
C20.0359 (16)0.0404 (16)0.0366 (16)0.0065 (13)0.0003 (13)0.0046 (13)
C30.057 (2)0.0499 (19)0.0335 (15)0.0115 (17)0.0036 (15)0.0044 (15)
C40.066 (2)0.074 (3)0.0332 (17)0.008 (2)0.0136 (17)0.0058 (17)
C50.056 (2)0.073 (3)0.049 (2)0.007 (2)0.0141 (17)0.014 (2)
C60.0415 (18)0.055 (2)0.0468 (18)0.0075 (16)0.0043 (15)0.0019 (16)
C70.0292 (15)0.059 (2)0.0363 (16)0.0010 (14)0.0048 (12)0.0036 (15)
C80.0332 (16)0.069 (2)0.0340 (16)0.0006 (15)0.0031 (13)0.0016 (16)
Geometric parameters (Å, º) top
Cl1—C21.726 (3)C2—C31.394 (4)
Cl2—C31.723 (4)C3—C41.369 (5)
Cl3—C81.761 (4)C4—C51.370 (6)
Cl4—C81.752 (4)C4—H40.9300
O1—C71.216 (4)C5—C61.389 (5)
N1—C71.333 (4)C5—H50.9300
N1—C11.426 (4)C6—H60.9300
N1—H1N0.8600C7—C81.523 (4)
C1—C21.382 (4)C8—H80.9800
C1—C61.382 (5)
C7—N1—C1123.9 (3)C4—C5—C6120.8 (4)
C7—N1—H1N118.0C4—C5—H5119.6
C1—N1—H1N118.0C6—C5—H5119.6
C2—C1—C6120.3 (3)C1—C6—C5119.1 (3)
C2—C1—N1119.2 (3)C1—C6—H6120.5
C6—C1—N1120.5 (3)C5—C6—H6120.5
C1—C2—C3119.6 (3)O1—C7—N1125.2 (3)
C1—C2—Cl1120.3 (2)O1—C7—C8120.4 (3)
C3—C2—Cl1120.1 (3)N1—C7—C8114.4 (3)
C4—C3—C2120.0 (3)C7—C8—Cl4110.8 (2)
C4—C3—Cl2119.4 (3)C7—C8—Cl3107.4 (2)
C2—C3—Cl2120.6 (3)Cl4—C8—Cl3109.98 (19)
C3—C4—C5120.1 (3)C7—C8—H8109.5
C3—C4—H4119.9Cl4—C8—H8109.5
C5—C4—H4119.9Cl3—C8—H8109.5
C7—N1—C1—C2131.1 (3)Cl2—C3—C4—C5180.0 (3)
C7—N1—C1—C650.7 (5)C3—C4—C5—C60.1 (6)
C6—C1—C2—C30.4 (5)C2—C1—C6—C50.9 (5)
N1—C1—C2—C3178.6 (3)N1—C1—C6—C5179.1 (3)
C6—C1—C2—Cl1180.0 (3)C4—C5—C6—C10.8 (6)
N1—C1—C2—Cl11.8 (4)C1—N1—C7—O13.4 (6)
C1—C2—C3—C40.3 (5)C1—N1—C7—C8175.7 (3)
Cl1—C2—C3—C4179.3 (3)O1—C7—C8—Cl442.7 (4)
C1—C2—C3—Cl2179.9 (2)N1—C7—C8—Cl4138.2 (3)
Cl1—C2—C3—Cl20.3 (4)O1—C7—C8—Cl377.5 (4)
C2—C3—C4—C50.4 (6)N1—C7—C8—Cl3101.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.952.790 (3)167
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H5Cl4NO
Mr272.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)4.674 (1), 11.804 (2), 19.833 (3)
β (°) 95.05 (1)
V3)1090.0 (3)
Z4
Radiation typeCu Kα
µ (mm1)9.60
Crystal size (mm)0.60 × 0.08 × 0.03
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.322, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
2435, 1950, 1421
Rint0.025
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.05
No. of reflections1950
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.44

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.952.790 (3)166.7
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds