Download citation
Download citation
link to html
The mol­ecular structure of the title compound, C26H31N3S, shows a guanidyl group bridged by an ethyl­ene linker with a localized C=N bond to the tritylsulfanyl unit. The N—C—C—S group has a folded non-planar conformation, with a torsion angle of 66.04 (15)°. Inter­molecular C—H...S hydrogen bonds link mol­ecules into chains extended along [010].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056759/bt2594sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056759/bt2594Isup2.hkl
Contains datablock I

CCDC reference: 672922

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.049
  • wR factor = 0.142
  • Data-to-parameter ratio = 19.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H25A .. S1 .. 2.95 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The synthesis and characterization of molecules containing nitrogen and sulfur as donor functions is important for biomimetic coordination chemistry. The use of this molecules as ligands in the synthesis of copper-complexes as mimics for active centres like the CuA in cytochrome-c-oxidase and N2O-reductase is currently of considerable interest in bioinorganic chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene (btmgp) and its complexes with Cu, Fe, Ni and Mn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann et al., 2001; Herres et al., 2005; Neuba, Herres-Pawlis et al., 2007). Recently, we reported about the molecular structure of N,N'-bis(1,3-dimethylimidazolidin-2-ylidene)-2,2'-dithiodianiline (II) and 2',2'-(2,2'-disulfanediylbis(2,1-phenylene))bis(1,1,3,3- tetramethylguanidine) (III) (Neuba, Flörke et al., 2007a,b) with two guanidyl groups bridged by a diphenyldisulfanyl linker. Now the title compound is another member of the guanidine based ligand family incorporating a guanidine- and a sulfur donor function. I, II and III possess equal CN bond lengths with 1.300 (2) in I, 1.297 (3) in II and 1.2812 (19) Å in III. Analogous to II and III the guanidyl double bond CN in I is clearly localized. The N–C–C–S group has a folded nonplanar conformation with a torsion angle of 66.04 (15)°.

Related literature top

For related literature see: Harmjanz (1997); Herres et al. (2005); Neuba, Flörke et al. (2007a,b); Neuba, Herres-Pawlis et al. (2007); Pohl et al. (2000); Schneider (2000); Waden (1999); Wenzhuo et al. (2003); Wittmann et al. (2001).

Experimental top

A solution of tetramethylchloroformamidinium chloride (5.13 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(tritylthio)ethanamine (Wenzhuo et al., 2003) (9.57 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the THF phase (3 x 80 ml). The organic phase was dried with Na2SO4. After filtration, the solvent was evaporated under reduced pressure. The crude product was recrystallized in MeCN and the title compound was obtained as a white powder (yield 77.0%, 9 g). Colourless crystals suitable for X-ray diffraction were obtained by diffusion of Et2O into a cold saturated MeCN solution. Spectroscopic analysis, 1H NMR (500 MHz, CDCl3): δ 2.39 (d, 2H, CH2), 2.62 (s, 12H, CH3.), 3.10 (dd, 2H, CH2), 7.17 (m, 3H, Try CH's.), 7.27 (m, 6H, Try CH's.), 7.43 (m, 6H, Try CH's.). 13C NMR (125 MHz, CDCl3): δ 35.1 (CH2), 38.8 (CH3), 39.5 (CH3), 48.6 (CH2), 66.2 (Cquart), 126.38 (CHarom), 127.72 (CHarom), 129.90 (CHarom), 129.74 (CHarom), 145.35 (Cquart), 160.65 (Cgua); IR (KBr, ν, cm-1): 3045 (w), 2992 (w), 2950 (w), 3925 (m), 2871 (m), 2829 (m), 2792 (w), 1691 (versus, CN), 1614 (versus, CN), 1490 (s), 1446 (s), 1444 (s), 1363 (s), 1132 (s), 1024 (m), 744 (s), 698 (versus), 622 (m), 578 (w), 507 (w); EI—MS: m/z (%) 418 (2) [M+], 243 (89), 215 (20), 174 (100), 128 (75), 85 (96), 71 (38); Elemental analysis (M = 418.23 g mol-1): calcd. for C36H31N3S: C 74.78, H: 7.48, N 10.06; found C: 73.1, H: 7.56, N: 10.11.

Refinement top

Hydrogen atoms were refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3). All CH3 groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL (Bruker, 2002); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [100] with hydrogen bond indicated as dashed lines. H-atoms not involved are omitted.
1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)ethyl]guanidine top
Crystal data top
C26H31N3SF(000) = 896
Mr = 417.60Dx = 1.224 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4979 reflections
a = 11.7059 (6) Åθ = 2.5–28.3°
b = 13.8102 (7) ŵ = 0.16 mm1
c = 14.2886 (7) ÅT = 120 K
β = 101.063 (1)°Block, colourless
V = 2267.0 (2) Å30.43 × 0.40 × 0.32 mm
Z = 4
Data collection top
Bruker AXS SMART APEX
diffractometer
5380 independent reflections
Radiation source: sealed tube4306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1512
Tmin = 0.905, Tmax = 0.951k = 1818
19345 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.0286P]
where P = (Fo2 + 2Fc2)/3
5380 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C26H31N3SV = 2267.0 (2) Å3
Mr = 417.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7059 (6) ŵ = 0.16 mm1
b = 13.8102 (7) ÅT = 120 K
c = 14.2886 (7) Å0.43 × 0.40 × 0.32 mm
β = 101.063 (1)°
Data collection top
Bruker AXS SMART APEX
diffractometer
5380 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4306 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.951Rint = 0.061
19345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
5380 reflectionsΔρmin = 0.35 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37632 (4)0.13069 (3)0.25946 (3)0.01926 (13)
N10.56201 (12)0.20942 (9)0.43375 (9)0.0192 (3)
N20.63255 (12)0.22038 (9)0.60122 (9)0.0214 (3)
N30.70913 (12)0.31770 (9)0.49347 (9)0.0219 (3)
C10.63107 (14)0.24506 (10)0.50601 (10)0.0183 (3)
C20.65769 (17)0.12119 (12)0.63128 (13)0.0285 (4)
H2A0.63970.07820.57580.043*
H2B0.61010.10310.67790.043*
H2C0.74030.11520.66040.043*
C30.65892 (16)0.29261 (12)0.67636 (11)0.0258 (4)
H3A0.74210.29020.70450.039*
H3B0.61330.27920.72570.039*
H3C0.63910.35710.64950.039*
C40.69383 (18)0.36216 (12)0.39961 (12)0.0302 (4)
H4A0.72200.31790.35540.045*
H4B0.73810.42280.40390.045*
H4C0.61110.37580.37630.045*
C50.83118 (15)0.30039 (13)0.53613 (14)0.0304 (4)
H5A0.83600.26630.59690.046*
H5B0.87210.36250.54730.046*
H5C0.86730.26080.49280.046*
C60.46551 (15)0.14912 (11)0.45075 (11)0.0206 (3)
H6A0.45010.16250.51530.025*
H6B0.48700.08000.44810.025*
C70.35577 (15)0.16880 (11)0.37683 (11)0.0210 (3)
H7A0.33750.23880.37580.025*
H7B0.28940.13320.39410.025*
C80.25120 (13)0.18796 (10)0.17909 (10)0.0166 (3)
C110.14460 (14)0.17146 (11)0.22436 (10)0.0180 (3)
C120.08681 (15)0.24665 (12)0.26000 (11)0.0227 (4)
H12A0.10920.31160.25110.027*
C130.00305 (16)0.22864 (13)0.30841 (12)0.0304 (4)
H13A0.04090.28130.33260.036*
C140.03812 (17)0.13497 (14)0.32186 (13)0.0314 (4)
H14A0.10050.12290.35410.038*
C150.01944 (16)0.05859 (13)0.28734 (12)0.0282 (4)
H15A0.00310.00620.29680.034*
C160.10907 (15)0.07632 (11)0.23935 (11)0.0230 (4)
H16A0.14740.02340.21610.028*
C210.27182 (14)0.29662 (10)0.16190 (11)0.0185 (3)
C220.19375 (16)0.34473 (11)0.09053 (12)0.0252 (4)
H22A0.13040.31010.05400.030*
C230.20778 (18)0.44233 (12)0.07244 (13)0.0321 (4)
H23A0.15460.47380.02330.039*
C240.29889 (18)0.49393 (12)0.12566 (14)0.0326 (4)
H24A0.30760.56100.11400.039*
C250.37728 (17)0.44727 (12)0.19593 (13)0.0293 (4)
H25A0.44040.48240.23220.035*
C260.36434 (16)0.34860 (11)0.21394 (12)0.0233 (4)
H26A0.41910.31700.26200.028*
C310.24462 (15)0.13587 (10)0.08293 (11)0.0177 (3)
C320.13857 (15)0.10574 (11)0.02863 (11)0.0208 (3)
H32A0.06880.11510.05210.025*
C330.13434 (16)0.06201 (11)0.05986 (11)0.0255 (4)
H33A0.06150.04210.09630.031*
C340.23468 (16)0.04730 (11)0.09500 (11)0.0262 (4)
H34A0.23150.01660.15500.031*
C350.34038 (16)0.07776 (12)0.04186 (12)0.0261 (4)
H35A0.41000.06780.06550.031*
C360.34505 (15)0.12277 (11)0.04577 (11)0.0221 (4)
H36A0.41770.14490.08070.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0185 (2)0.0212 (2)0.0170 (2)0.00201 (14)0.00065 (16)0.00119 (14)
N10.0197 (7)0.0192 (6)0.0183 (6)0.0034 (5)0.0029 (5)0.0001 (5)
N20.0240 (8)0.0220 (6)0.0164 (6)0.0020 (5)0.0004 (5)0.0007 (5)
N30.0217 (8)0.0252 (6)0.0190 (7)0.0079 (5)0.0043 (6)0.0014 (5)
C10.0193 (9)0.0185 (7)0.0173 (7)0.0015 (6)0.0038 (6)0.0004 (5)
C20.0311 (11)0.0262 (8)0.0259 (9)0.0004 (7)0.0007 (7)0.0066 (7)
C30.0252 (10)0.0322 (8)0.0192 (8)0.0032 (7)0.0025 (7)0.0046 (6)
C40.0392 (12)0.0290 (9)0.0244 (9)0.0121 (7)0.0107 (8)0.0002 (7)
C50.0216 (10)0.0335 (9)0.0374 (10)0.0061 (7)0.0085 (8)0.0082 (8)
C60.0223 (9)0.0213 (7)0.0167 (8)0.0047 (6)0.0001 (6)0.0010 (6)
C70.0208 (9)0.0260 (8)0.0156 (7)0.0026 (6)0.0018 (6)0.0013 (6)
C80.0162 (8)0.0161 (6)0.0166 (7)0.0005 (5)0.0008 (6)0.0004 (5)
C110.0151 (8)0.0225 (7)0.0149 (7)0.0023 (6)0.0008 (6)0.0002 (5)
C120.0201 (9)0.0254 (7)0.0229 (8)0.0034 (6)0.0046 (7)0.0029 (6)
C130.0268 (11)0.0368 (9)0.0290 (9)0.0013 (7)0.0090 (8)0.0070 (7)
C140.0233 (10)0.0470 (11)0.0254 (9)0.0090 (8)0.0087 (7)0.0000 (8)
C150.0274 (10)0.0313 (9)0.0255 (9)0.0117 (7)0.0038 (7)0.0023 (7)
C160.0229 (9)0.0226 (7)0.0220 (8)0.0044 (6)0.0007 (7)0.0005 (6)
C210.0207 (9)0.0166 (7)0.0202 (8)0.0004 (6)0.0089 (6)0.0016 (6)
C220.0281 (10)0.0218 (7)0.0260 (9)0.0025 (7)0.0062 (7)0.0003 (6)
C230.0417 (12)0.0242 (8)0.0331 (10)0.0086 (8)0.0135 (8)0.0058 (7)
C240.0430 (12)0.0180 (7)0.0443 (11)0.0001 (7)0.0267 (9)0.0007 (7)
C250.0319 (11)0.0230 (8)0.0375 (10)0.0081 (7)0.0181 (8)0.0071 (7)
C260.0245 (9)0.0226 (7)0.0244 (8)0.0040 (6)0.0086 (7)0.0024 (6)
C310.0215 (9)0.0144 (6)0.0162 (7)0.0001 (5)0.0012 (6)0.0012 (5)
C320.0184 (9)0.0222 (7)0.0213 (8)0.0014 (6)0.0025 (6)0.0002 (6)
C330.0312 (10)0.0220 (7)0.0204 (8)0.0008 (6)0.0027 (7)0.0009 (6)
C340.0395 (11)0.0209 (7)0.0181 (8)0.0009 (7)0.0058 (7)0.0018 (6)
C350.0314 (11)0.0278 (8)0.0218 (8)0.0024 (7)0.0119 (7)0.0005 (6)
C360.0230 (10)0.0231 (7)0.0202 (8)0.0019 (6)0.0039 (7)0.0005 (6)
Geometric parameters (Å, º) top
S1—C71.8172 (16)C12—C131.388 (3)
S1—C81.8559 (15)C12—H12A0.9500
N1—C11.2812 (19)C13—C141.382 (3)
N1—C61.461 (2)C13—H13A0.9500
N2—C11.3993 (19)C14—C151.392 (3)
N2—C21.449 (2)C14—H14A0.9500
N2—C31.455 (2)C15—C161.381 (2)
N3—C11.392 (2)C15—H15A0.9500
N3—C41.454 (2)C16—H16A0.9500
N3—C51.461 (2)C21—C261.390 (2)
C2—H2A0.9800C21—C221.400 (2)
C2—H2B0.9800C22—C231.388 (2)
C2—H2C0.9800C22—H22A0.9500
C3—H3A0.9800C23—C241.383 (3)
C3—H3B0.9800C23—H23A0.9500
C3—H3C0.9800C24—C251.383 (3)
C4—H4A0.9800C24—H24A0.9500
C4—H4B0.9800C25—C261.400 (2)
C4—H4C0.9800C25—H25A0.9500
C5—H5A0.9800C26—H26A0.9500
C5—H5B0.9800C31—C361.391 (2)
C5—H5C0.9800C31—C321.395 (2)
C6—C71.523 (2)C32—C331.394 (2)
C6—H6A0.9900C32—H32A0.9500
C6—H6B0.9900C33—C341.378 (3)
C7—H7A0.9900C33—H33A0.9500
C7—H7B0.9900C34—C351.387 (3)
C8—C111.529 (2)C34—H34A0.9500
C8—C311.540 (2)C35—C361.390 (2)
C8—C211.547 (2)C35—H35A0.9500
C11—C121.388 (2)C36—H36A0.9500
C11—C161.407 (2)
C7—S1—C8102.65 (7)C12—C11—C8122.58 (14)
C1—N1—C6118.26 (13)C16—C11—C8119.53 (14)
C1—N2—C2118.85 (13)C13—C12—C11121.21 (15)
C1—N2—C3120.79 (13)C13—C12—H12A119.4
C2—N2—C3115.29 (13)C11—C12—H12A119.4
C1—N3—C4117.09 (13)C14—C13—C12120.73 (17)
C1—N3—C5116.23 (13)C14—C13—H13A119.6
C4—N3—C5113.03 (15)C12—C13—H13A119.6
N1—C1—N3120.10 (14)C13—C14—C15118.89 (18)
N1—C1—N2125.31 (14)C13—C14—H14A120.6
N3—C1—N2114.51 (13)C15—C14—H14A120.6
N2—C2—H2A109.5C16—C15—C14120.48 (16)
N2—C2—H2B109.5C16—C15—H15A119.8
H2A—C2—H2B109.5C14—C15—H15A119.8
N2—C2—H2C109.5C15—C16—C11121.08 (16)
H2A—C2—H2C109.5C15—C16—H16A119.5
H2B—C2—H2C109.5C11—C16—H16A119.5
N2—C3—H3A109.5C26—C21—C22118.52 (14)
N2—C3—H3B109.5C26—C21—C8123.04 (14)
H3A—C3—H3B109.5C22—C21—C8118.44 (14)
N2—C3—H3C109.5C23—C22—C21120.84 (16)
H3A—C3—H3C109.5C23—C22—H22A119.6
H3B—C3—H3C109.5C21—C22—H22A119.6
N3—C4—H4A109.5C24—C23—C22120.29 (17)
N3—C4—H4B109.5C24—C23—H23A119.9
H4A—C4—H4B109.5C22—C23—H23A119.9
N3—C4—H4C109.5C25—C24—C23119.57 (15)
H4A—C4—H4C109.5C25—C24—H24A120.2
H4B—C4—H4C109.5C23—C24—H24A120.2
N3—C5—H5A109.5C24—C25—C26120.45 (16)
N3—C5—H5B109.5C24—C25—H25A119.8
H5A—C5—H5B109.5C26—C25—H25A119.8
N3—C5—H5C109.5C21—C26—C25120.32 (16)
H5A—C5—H5C109.5C21—C26—H26A119.8
H5B—C5—H5C109.5C25—C26—H26A119.8
N1—C6—C7111.05 (13)C36—C31—C32118.41 (14)
N1—C6—H6A109.4C36—C31—C8120.00 (14)
C7—C6—H6A109.4C32—C31—C8121.49 (15)
N1—C6—H6B109.4C33—C32—C31120.45 (16)
C7—C6—H6B109.4C33—C32—H32A119.8
H6A—C6—H6B108.0C31—C32—H32A119.8
C6—C7—S1110.18 (12)C34—C33—C32120.67 (16)
C6—C7—H7A109.6C34—C33—H33A119.7
S1—C7—H7A109.6C32—C33—H33A119.7
C6—C7—H7B109.6C33—C34—C35119.27 (15)
S1—C7—H7B109.6C33—C34—H34A120.4
H7A—C7—H7B108.1C35—C34—H34A120.4
C11—C8—C31113.75 (12)C34—C35—C36120.37 (17)
C11—C8—C21112.13 (12)C34—C35—H35A119.8
C31—C8—C21107.10 (12)C36—C35—H35A119.8
C11—C8—S1106.62 (10)C35—C36—C31120.80 (15)
C31—C8—S1104.56 (10)C35—C36—H36A119.6
C21—C8—S1112.52 (10)C31—C36—H36A119.6
C12—C11—C16117.61 (16)
C6—N1—C1—N3167.11 (14)C8—C11—C16—C15174.43 (14)
C6—N1—C1—N29.7 (2)C11—C8—C21—C26109.61 (17)
C4—N3—C1—N110.9 (2)C31—C8—C21—C26124.93 (16)
C5—N3—C1—N1126.98 (16)S1—C8—C21—C2610.6 (2)
C4—N3—C1—N2166.20 (15)C11—C8—C21—C2270.47 (18)
C5—N3—C1—N255.91 (19)C31—C8—C21—C2254.98 (19)
C2—N2—C1—N161.4 (2)S1—C8—C21—C22169.34 (13)
C3—N2—C1—N1144.98 (17)C26—C21—C22—C230.4 (3)
C2—N2—C1—N3121.68 (16)C8—C21—C22—C23179.65 (15)
C3—N2—C1—N332.0 (2)C21—C22—C23—C240.7 (3)
C1—N1—C6—C7140.92 (15)C22—C23—C24—C251.2 (3)
N1—C6—C7—S166.04 (15)C23—C24—C25—C260.5 (3)
C8—S1—C7—C6166.43 (10)C22—C21—C26—C251.1 (2)
C7—S1—C8—C1143.94 (11)C8—C21—C26—C25179.03 (15)
C7—S1—C8—C31164.72 (10)C24—C25—C26—C210.6 (3)
C7—S1—C8—C2179.39 (12)C11—C8—C31—C36163.15 (13)
C31—C8—C11—C12131.94 (14)C21—C8—C31—C3672.38 (16)
C21—C8—C11—C1210.2 (2)S1—C8—C31—C3647.22 (15)
S1—C8—C11—C12113.35 (14)C11—C8—C31—C3220.51 (19)
C31—C8—C11—C1654.32 (18)C21—C8—C31—C32103.96 (16)
C21—C8—C11—C16176.04 (13)S1—C8—C31—C32136.43 (12)
S1—C8—C11—C1660.39 (15)C36—C31—C32—C331.2 (2)
C16—C11—C12—C130.2 (2)C8—C31—C32—C33177.56 (14)
C8—C11—C12—C13174.07 (14)C31—C32—C33—C340.4 (2)
C11—C12—C13—C140.5 (3)C32—C33—C34—C350.9 (2)
C12—C13—C14—C151.0 (3)C33—C34—C35—C360.1 (2)
C13—C14—C15—C160.8 (3)C34—C35—C36—C311.7 (2)
C14—C15—C16—C110.2 (2)C32—C31—C36—C352.2 (2)
C12—C11—C16—C150.4 (2)C8—C31—C36—C35178.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···S1i0.952.953.7995 (18)149
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H31N3S
Mr417.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.7059 (6), 13.8102 (7), 14.2886 (7)
β (°) 101.063 (1)
V3)2267.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.43 × 0.40 × 0.32
Data collection
DiffractometerBruker AXS SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.905, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
19345, 5380, 4306
Rint0.061
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.04
No. of reflections5380
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Bruker, 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···S1i0.952.953.7995 (18)149.2
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds