Download citation
Download citation
link to html
The title compound, C9H12N2, crystallizes with two almost identical mol­ecules in the asymmetric unit. The ring containing the N atom in the tetra­hydro­quinoline system adopts a half-chair conformation. The crystal structure is stabilized by inter­molecular N—H...N and N—H...π hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050878/bt2542sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050878/bt2542Isup2.hkl
Contains datablock I

CCDC reference: 669145

Key indicators

  • Single-crystal X-ray study
  • T = 113 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.093
  • Data-to-parameter ratio = 7.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.87 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2D ... ? PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4B ... ? PLAT481_ALERT_4_C Long D...A H-Bond Reported N4 .. CG2 .. 4.01 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.36 From the CIF: _reflns_number_total 1762 Count of symmetry unique reflns 1767 Completeness (_total/calc) 99.72% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2,3,4-Tetrahydroquinolin-7-amine is an important intermediate for the preparation of 7-hydroxy-1,2,3,4-tetrahydroquinoline which is an intermediate useful for the economic manufacture of laser dyes for wavelengths between 540 and 610 nm (Field & Hammond, 1994). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of 1,2,3,4-tetrahydroquinolin-7-amine The molecular structure of the title compound is illustrated in Fig. 1. There are two almost identical molecules in the asymmetric unit. The ring containing the nitrigen atom in the tetrahydroquinolin adopts a partical chair conformation. The crystal structure is stabilized by intermolecular N—H···N and N—H···π hydrogen bonds.

Related literature top

For related literature, see: Field & Hammond (1994).

Experimental top

7-nitro-1, 2, 3, 4-tetrahydroquinoline (0.05 mol, 8.91 g), 80 ml of methanol and 1.5 g of Raney nickel slurry were rinsed with methanol under nitrogen. Addition of a solution of 5.5 ml (0.1 mol) hydrazine hydrate in 10 ml of methanol to the stirred mixture started the reaction. The reaction mixture was heated under reflux to complete the reduction, the catalyst was filtered off through celite and washed with methanol. The filtrate was concentrated in vacuo and reconcentrated twice with toluene to remove water. The residue was crystallized from PE to give 6.95 g of 7-amine-1,2,3,4-tetrahydroquinolin as a white needle solid, suitable for X-ray analysis. 1,2,3,4-tetrahydroquinolin-7-amine was quite sensitive to air, it quickly changed black solid.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined using riding model with Uiso (H) = 1.2 Ueq (carrier). H atoms bonded to N were located from difference map and freely refined. Friedel pairs were merged and the absolute structure was arbitrarily assigned.

Structure description top

1,2,3,4-Tetrahydroquinolin-7-amine is an important intermediate for the preparation of 7-hydroxy-1,2,3,4-tetrahydroquinoline which is an intermediate useful for the economic manufacture of laser dyes for wavelengths between 540 and 610 nm (Field & Hammond, 1994). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of 1,2,3,4-tetrahydroquinolin-7-amine The molecular structure of the title compound is illustrated in Fig. 1. There are two almost identical molecules in the asymmetric unit. The ring containing the nitrigen atom in the tetrahydroquinolin adopts a partical chair conformation. The crystal structure is stabilized by intermolecular N—H···N and N—H···π hydrogen bonds.

For related literature, see: Field & Hammond (1994).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis.
1,2,3,4-Tetrahydroquinolin-7-amine top
Crystal data top
C9H12N2Dx = 1.214 Mg m3
Mr = 148.21Melting point = 91–93 K
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
a = 8.7642 (15) ÅCell parameters from 2296 reflections
b = 8.7401 (14) Åθ = 1.9–27.5°
c = 11.0393 (18) ŵ = 0.07 mm1
β = 106.459 (7)°T = 113 K
V = 811.0 (2) Å3Prism, colorless
Z = 40.10 × 0.04 × 0.04 mm
F(000) = 320
Data collection top
Rigaku Saturn
diffractometer
1762 independent reflections
Radiation source: rotating anode1586 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.043
Detector resolution: 7.31 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1010
Tmin = 0.993, Tmax = 0.997l = 1313
8269 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.0684P]
where P = (Fo2 + 2Fc2)/3
1762 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C9H12N2V = 811.0 (2) Å3
Mr = 148.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.7642 (15) ŵ = 0.07 mm1
b = 8.7401 (14) ÅT = 113 K
c = 11.0393 (18) Å0.10 × 0.04 × 0.04 mm
β = 106.459 (7)°
Data collection top
Rigaku Saturn
diffractometer
1762 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1586 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.997Rint = 0.043
8269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.15 e Å3
1762 reflectionsΔρmin = 0.18 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7907 (2)0.5321 (2)0.1189 (2)0.0251 (5)
N21.2746 (3)0.7827 (2)0.1012 (2)0.0268 (5)
N30.3190 (2)0.2353 (3)0.1461 (2)0.0244 (5)
N40.7647 (3)0.0285 (3)0.0695 (2)0.0267 (5)
C10.6786 (3)0.4944 (3)0.1903 (2)0.0278 (6)
H1A0.59210.42920.13850.033*
H1B0.63060.58920.21230.033*
C20.7669 (3)0.4098 (3)0.3100 (2)0.0313 (6)
H2A0.81690.31640.28790.038*
H2B0.69120.37870.35710.038*
C30.8946 (3)0.5144 (3)0.3923 (2)0.0308 (6)
H3A0.84320.59510.43000.037*
H3B0.96470.45400.46200.037*
C40.9940 (3)0.5883 (3)0.3161 (2)0.0227 (5)
C50.9367 (3)0.5982 (3)0.1844 (2)0.0208 (5)
C61.0290 (3)0.6669 (3)0.1147 (2)0.0216 (5)
H60.98840.67360.02540.026*
C71.1788 (3)0.7255 (3)0.1737 (2)0.0229 (5)
C81.2358 (3)0.7169 (3)0.3057 (2)0.0259 (6)
H81.33780.75670.34810.031*
C91.1429 (3)0.6501 (3)0.3738 (2)0.0266 (6)
H91.18240.64650.46330.032*
C100.2362 (3)0.2950 (3)0.2333 (3)0.0330 (7)
H10A0.13090.33530.18530.040*
H10B0.29830.38000.28310.040*
C110.2152 (3)0.1690 (4)0.3212 (3)0.0356 (7)
H11A0.15140.08490.27140.043*
H11B0.15740.20920.37960.043*
C120.3775 (3)0.1080 (3)0.3969 (2)0.0281 (6)
H12A0.43210.18610.45910.034*
H12B0.36260.01540.44390.034*
C130.4798 (3)0.0691 (3)0.3116 (2)0.0219 (5)
C140.4495 (3)0.1397 (3)0.1925 (2)0.0209 (5)
C150.5473 (3)0.1068 (3)0.1147 (2)0.0201 (5)
H150.52660.15490.03460.024*
C160.6734 (3)0.0052 (3)0.1529 (2)0.0223 (5)
C170.7039 (3)0.0655 (3)0.2708 (2)0.0263 (6)
H170.78990.13520.29840.032*
C180.6071 (3)0.0325 (3)0.3470 (2)0.0243 (5)
H180.62840.08140.42690.029*
H10.749 (3)0.574 (3)0.042 (2)0.023 (7)*
H30.323 (3)0.297 (3)0.080 (3)0.032 (8)*
H2C1.218 (3)0.832 (4)0.031 (3)0.037 (8)*
H2D1.360 (3)0.841 (4)0.147 (3)0.039 (8)*
H4A0.769 (3)0.048 (4)0.015 (3)0.041 (9)*
H4B0.866 (4)0.066 (4)0.107 (3)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (10)0.0299 (13)0.0195 (11)0.0025 (9)0.0039 (8)0.0003 (10)
N20.0271 (11)0.0245 (13)0.0289 (13)0.0037 (9)0.0084 (9)0.0005 (10)
N30.0270 (11)0.0248 (12)0.0234 (11)0.0066 (9)0.0104 (9)0.0049 (10)
N40.0248 (11)0.0268 (13)0.0303 (12)0.0002 (9)0.0109 (9)0.0055 (11)
C10.0248 (12)0.0271 (15)0.0326 (14)0.0044 (11)0.0097 (10)0.0008 (12)
C20.0334 (13)0.0317 (15)0.0310 (15)0.0051 (12)0.0125 (11)0.0009 (13)
C30.0364 (14)0.0321 (15)0.0251 (14)0.0082 (12)0.0103 (11)0.0006 (12)
C40.0270 (12)0.0217 (13)0.0199 (12)0.0029 (10)0.0073 (9)0.0004 (10)
C50.0221 (11)0.0159 (12)0.0238 (12)0.0037 (10)0.0055 (9)0.0023 (10)
C60.0241 (11)0.0209 (13)0.0186 (11)0.0038 (10)0.0043 (9)0.0023 (10)
C70.0255 (12)0.0181 (13)0.0260 (13)0.0012 (10)0.0086 (10)0.0005 (11)
C80.0256 (12)0.0234 (14)0.0254 (13)0.0028 (11)0.0020 (10)0.0032 (11)
C90.0325 (14)0.0256 (15)0.0194 (12)0.0025 (11)0.0038 (10)0.0005 (11)
C100.0405 (15)0.0298 (16)0.0337 (15)0.0131 (12)0.0184 (12)0.0063 (13)
C110.0396 (15)0.0400 (17)0.0327 (14)0.0091 (13)0.0191 (12)0.0043 (14)
C120.0382 (14)0.0267 (15)0.0218 (12)0.0026 (11)0.0124 (11)0.0017 (11)
C130.0271 (12)0.0179 (13)0.0196 (11)0.0035 (10)0.0049 (9)0.0021 (10)
C140.0208 (11)0.0166 (13)0.0240 (12)0.0017 (10)0.0043 (9)0.0036 (10)
C150.0237 (12)0.0180 (13)0.0183 (11)0.0030 (10)0.0054 (9)0.0003 (10)
C160.0226 (11)0.0173 (12)0.0264 (13)0.0024 (10)0.0060 (10)0.0053 (11)
C170.0220 (12)0.0217 (14)0.0312 (14)0.0024 (10)0.0013 (10)0.0019 (12)
C180.0284 (12)0.0220 (13)0.0191 (11)0.0020 (10)0.0014 (9)0.0011 (11)
Geometric parameters (Å, º) top
N1—C51.403 (3)C6—C71.387 (3)
N1—C11.461 (3)C6—H60.9500
N1—H10.90 (3)C7—C81.402 (3)
N2—C71.405 (3)C8—C91.385 (3)
N2—H2C0.90 (3)C8—H80.9500
N2—H2D0.93 (3)C9—H90.9500
N3—C141.392 (3)C10—C111.513 (4)
N3—C101.456 (3)C10—H10A0.9900
N3—H30.92 (3)C10—H10B0.9900
N4—C161.411 (3)C11—C121.527 (4)
N4—H4A0.90 (3)C11—H11A0.9900
N4—H4B0.92 (3)C11—H11B0.9900
C1—C21.520 (4)C12—C131.512 (3)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—C31.529 (4)C13—C181.393 (3)
C2—H2A0.9900C13—C141.407 (3)
C2—H2B0.9900C14—C151.404 (3)
C3—C41.516 (3)C15—C161.387 (3)
C3—H3A0.9900C15—H150.9500
C3—H3B0.9900C16—C171.397 (3)
C4—C91.389 (3)C17—C181.383 (3)
C4—C51.400 (3)C17—H170.9500
C5—C61.401 (3)C18—H180.9500
C5—N1—C1118.0 (2)C9—C8—C7119.7 (2)
C5—N1—H1112.7 (16)C9—C8—H8120.1
C1—N1—H1116.1 (16)C7—C8—H8120.1
C7—N2—H2C112.6 (17)C8—C9—C4122.4 (2)
C7—N2—H2D113.5 (16)C8—C9—H9118.8
H2C—N2—H2D112 (3)C4—C9—H9118.8
C14—N3—C10118.9 (2)N3—C10—C11109.7 (2)
C14—N3—H3115.7 (16)N3—C10—H10A109.7
C10—N3—H3117.0 (17)C11—C10—H10A109.7
C16—N4—H4A114.3 (19)N3—C10—H10B109.7
C16—N4—H4B115.7 (17)C11—C10—H10B109.7
H4A—N4—H4B110 (3)H10A—C10—H10B108.2
N1—C1—C2108.92 (19)C10—C11—C12109.9 (2)
N1—C1—H1A109.9C10—C11—H11A109.7
C2—C1—H1A109.9C12—C11—H11A109.7
N1—C1—H1B109.9C10—C11—H11B109.7
C2—C1—H1B109.9C12—C11—H11B109.7
H1A—C1—H1B108.3H11A—C11—H11B108.2
C1—C2—C3109.4 (2)C13—C12—C11111.3 (2)
C1—C2—H2A109.8C13—C12—H12A109.4
C3—C2—H2A109.8C11—C12—H12A109.4
C1—C2—H2B109.8C13—C12—H12B109.4
C3—C2—H2B109.8C11—C12—H12B109.4
H2A—C2—H2B108.2H12A—C12—H12B108.0
C4—C3—C2111.3 (2)C18—C13—C14117.7 (2)
C4—C3—H3A109.4C18—C13—C12122.5 (2)
C2—C3—H3A109.4C14—C13—C12119.7 (2)
C4—C3—H3B109.4N3—C14—C15118.6 (2)
C2—C3—H3B109.4N3—C14—C13121.6 (2)
H3A—C3—H3B108.0C15—C14—C13119.7 (2)
C9—C4—C5117.8 (2)C16—C15—C14121.2 (2)
C9—C4—C3121.6 (2)C16—C15—H15119.4
C5—C4—C3120.6 (2)C14—C15—H15119.4
C4—C5—C6120.3 (2)C15—C16—C17119.4 (2)
C4—C5—N1121.1 (2)C15—C16—N4119.1 (2)
C6—C5—N1118.6 (2)C17—C16—N4121.4 (2)
C7—C6—C5121.2 (2)C18—C17—C16119.1 (2)
C7—C6—H6119.4C18—C17—H17120.5
C5—C6—H6119.4C16—C17—H17120.5
C6—C7—C8118.7 (2)C17—C18—C13122.9 (2)
C6—C7—N2120.2 (2)C17—C18—H18118.6
C8—C7—N2121.1 (2)C13—C18—H18118.6
C5—N1—C1—C247.4 (3)C14—N3—C10—C1143.4 (3)
N1—C1—C2—C362.4 (3)N3—C10—C11—C1260.2 (3)
C1—C2—C3—C448.7 (3)C10—C11—C12—C1350.2 (3)
C2—C3—C4—C9160.7 (2)C11—C12—C13—C18158.1 (2)
C2—C3—C4—C520.2 (3)C11—C12—C13—C1423.4 (3)
C9—C4—C5—C60.8 (3)C10—N3—C14—C15167.7 (2)
C3—C4—C5—C6179.9 (2)C10—N3—C14—C1316.0 (3)
C9—C4—C5—N1177.0 (2)C18—C13—C14—N3175.9 (2)
C3—C4—C5—N13.9 (4)C12—C13—C14—N35.5 (3)
C1—N1—C5—C418.2 (3)C18—C13—C14—C150.3 (3)
C1—N1—C5—C6165.5 (2)C12—C13—C14—C15178.3 (2)
C4—C5—C6—C70.4 (3)N3—C14—C15—C16176.1 (2)
N1—C5—C6—C7175.9 (2)C13—C14—C15—C160.2 (3)
C5—C6—C7—C81.0 (4)C14—C15—C16—C170.1 (3)
C5—C6—C7—N2174.8 (2)C14—C15—C16—N4177.7 (2)
C6—C7—C8—C90.3 (4)C15—C16—C17—C180.1 (3)
N2—C7—C8—C9175.4 (2)N4—C16—C17—C18177.6 (2)
C7—C8—C9—C40.9 (4)C16—C17—C18—C130.2 (4)
C5—C4—C9—C81.5 (4)C14—C13—C18—C170.4 (3)
C3—C4—C9—C8179.5 (2)C12—C13—C18—C17178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.90 (3)2.39 (3)3.271 (3)164 (2)
N4—H4B···Cg2i0.90 (3)3.1954.015149
N2—H2C···N1ii0.90 (3)2.40 (3)3.194 (3)147 (2)
N2—H2D···Cg1iii0.90 (3)2.533.446168
N3—H3···N4iv0.92 (3)2.22 (3)3.078 (3)156 (2)
N1—H1···N3iv0.90 (3)2.44 (3)3.323 (3)167 (2)
Symmetry codes: (i) x+2, y1/2, z; (ii) x+2, y+1/2, z; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC9H12N2
Mr148.21
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)8.7642 (15), 8.7401 (14), 11.0393 (18)
β (°) 106.459 (7)
V3)811.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.10 × 0.04 × 0.04
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.993, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
8269, 1762, 1586
Rint0.043
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.093, 1.09
No. of reflections1762
No. of parameters224
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.90 (3)2.39 (3)3.271 (3)164 (2)
N4—H4B···Cg2i0.90 (3)3.1954.015149
N2—H2C···N1ii0.90 (3)2.40 (3)3.194 (3)147 (2)
N2—H2D···Cg1iii0.90 (3)2.533.446168
N3—H3···N4iv0.92 (3)2.22 (3)3.078 (3)156 (2)
N1—H1···N3iv0.90 (3)2.44 (3)3.323 (3)167 (2)
Symmetry codes: (i) x+2, y1/2, z; (ii) x+2, y+1/2, z; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds