Download citation
Download citation
link to html
The conformation of the N—H bond in the title compound, C8H5Cl4NO, is syn to the 3-chloro substituent, in contrast to the anti conformation observed in N-(3,4-dichloro­phen­yl)­acetamide, 2,2-dichloro-N-(3-chloro­phen­yl)acetamide and 2,2,2-trichloro-N-(3,4-dichloro­phen­yl)acetamide. The bond parameters in the title compound are similar to those in other acetanilides. The mol­ecules are linked into zigzag chains running along the c axis through N—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041025/bt2485sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041025/bt2485Isup2.hkl
Contains datablock I

CCDC reference: 660338

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.75 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C8
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the present work, the structure of N-(3,4-dichlorophenyl)-2,2- dichloroacetamide (34DCPDCA) has been determined to study the substituent effects on the structures of N-aromatic amides (Gowda et al., 2006; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The conformation of the N—H bond in 34DCPDCA is syn to the 3-chloro substituent (Fig. 1), compared to the anti conformation observed in the chain unsubstituted N-(3,4-dichlorophenyl)- acetamide (34DCPA)(Jones et al., 1990), N-(3-chlorophenyl)- 2,2-dichloroacetamide (3CPDCA)(Gowda et al., 2006) and N-(3,4-dichlorophenyl)-2,2,2-trichloroacetamide (34DCPTCA)(Gowda, Kožíšek, Tokarčík & Fuess, 2007). The bond parameters in 34DCPDCA are similar to those in 34DCPA, 3CPDCA, 34DCPTCA and other acetanilides (Gowda et al., 2006; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The molecules in 34DCPDCA are linked into chains via N—H···O hydrogen bonding (Fig.2).

Related literature top

For related literature, see: Gowda et al. (2006); Gowda, Kozisek, Svoboda & Fuess, (2007); Gowda, Kožíšek, Tokarčík & Fuess (2007); Jones et al. (1990); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studied at room temperature.

Refinement top

The amino H atom was located in difference map and was freely refined. The other H atoms were positioned with idealized geometry using a riding model (C—H = 0.93–0.98 Å). All H atoms bonded to C were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

In the present work, the structure of N-(3,4-dichlorophenyl)-2,2- dichloroacetamide (34DCPDCA) has been determined to study the substituent effects on the structures of N-aromatic amides (Gowda et al., 2006; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The conformation of the N—H bond in 34DCPDCA is syn to the 3-chloro substituent (Fig. 1), compared to the anti conformation observed in the chain unsubstituted N-(3,4-dichlorophenyl)- acetamide (34DCPA)(Jones et al., 1990), N-(3-chlorophenyl)- 2,2-dichloroacetamide (3CPDCA)(Gowda et al., 2006) and N-(3,4-dichlorophenyl)-2,2,2-trichloroacetamide (34DCPTCA)(Gowda, Kožíšek, Tokarčík & Fuess, 2007). The bond parameters in 34DCPDCA are similar to those in 34DCPA, 3CPDCA, 34DCPTCA and other acetanilides (Gowda et al., 2006; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The molecules in 34DCPDCA are linked into chains via N—H···O hydrogen bonding (Fig.2).

For related literature, see: Gowda et al. (2006); Gowda, Kozisek, Svoboda & Fuess, (2007); Gowda, Kožíšek, Tokarčík & Fuess (2007); Jones et al. (1990); Shilpa & Gowda (2007).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(3,4-dichlorophenyl)acetamide top
Crystal data top
C8H5Cl4NOF(000) = 544
Mr = 272.93Dx = 1.721 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.898 (5) Åθ = 5.7–23.9°
b = 10.310 (3) ŵ = 9.93 mm1
c = 9.212 (2) ÅT = 299 K
β = 111.23 (3)°Prism, colourless
V = 1053.3 (6) Å30.25 × 0.23 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1690 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 67.0°, θmin = 4.0°
ω/2θ scansh = 1414
Absorption correction: ψ scan
(North et al., 1968)
k = 120
Tmin = 0.120, Tmax = 0.138l = 104
2954 measured reflections3 standard reflections every 120 min
1877 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.967P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1877 reflectionsΔρmax = 0.56 e Å3
131 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
C8H5Cl4NOV = 1053.3 (6) Å3
Mr = 272.93Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.898 (5) ŵ = 9.93 mm1
b = 10.310 (3) ÅT = 299 K
c = 9.212 (2) Å0.25 × 0.23 × 0.20 mm
β = 111.23 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1690 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.120, Tmax = 0.1383 standard reflections every 120 min
2954 measured reflections intensity decay: 1.0%
1877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.56 e Å3
1877 reflectionsΔρmin = 0.37 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3114 (2)0.6392 (2)0.1238 (3)0.0323 (5)
C20.3922 (2)0.6851 (3)0.0593 (3)0.0357 (5)
H20.36700.74460.02200.043*
C30.5100 (2)0.6426 (3)0.1154 (3)0.0388 (6)
C40.5474 (2)0.5531 (3)0.2341 (3)0.0441 (6)
C50.4653 (3)0.5052 (3)0.2945 (3)0.0467 (7)
H50.49010.44330.37320.056*
C60.3476 (2)0.5471 (3)0.2409 (3)0.0400 (6)
H60.29320.51400.28280.048*
C70.1198 (2)0.7060 (2)0.1425 (3)0.0330 (5)
C80.0002 (2)0.7693 (3)0.0475 (3)0.0403 (6)
H80.00300.80020.05170.048*
N10.19265 (18)0.6887 (2)0.0630 (2)0.0339 (5)
H1N0.174 (3)0.720 (3)0.020 (4)0.041*
O10.14306 (18)0.6745 (2)0.2774 (2)0.0470 (5)
Cl10.60911 (7)0.70548 (8)0.03597 (11)0.0602 (3)
Cl20.69516 (7)0.50195 (9)0.30933 (12)0.0738 (3)
Cl30.11360 (7)0.65230 (11)0.01221 (13)0.0785 (3)
Cl40.02442 (9)0.90102 (9)0.15321 (10)0.0679 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (12)0.0373 (13)0.0287 (11)0.0023 (10)0.0124 (9)0.0040 (9)
C20.0330 (13)0.0393 (13)0.0371 (12)0.0025 (10)0.0155 (10)0.0017 (10)
C30.0327 (13)0.0401 (14)0.0477 (14)0.0009 (10)0.0195 (11)0.0059 (11)
C40.0361 (13)0.0401 (14)0.0497 (15)0.0074 (11)0.0079 (11)0.0067 (12)
C50.0548 (17)0.0397 (15)0.0413 (14)0.0073 (12)0.0122 (12)0.0047 (11)
C60.0460 (14)0.0402 (14)0.0370 (13)0.0021 (11)0.0188 (11)0.0008 (11)
C70.0309 (12)0.0394 (13)0.0315 (12)0.0074 (10)0.0146 (9)0.0060 (10)
C80.0336 (13)0.0530 (16)0.0383 (13)0.0014 (11)0.0177 (11)0.0040 (11)
N10.0290 (10)0.0485 (13)0.0258 (9)0.0016 (9)0.0120 (8)0.0026 (9)
O10.0481 (11)0.0659 (13)0.0317 (9)0.0038 (9)0.0201 (8)0.0024 (8)
Cl10.0420 (4)0.0638 (5)0.0887 (6)0.0026 (3)0.0403 (4)0.0032 (4)
Cl20.0412 (4)0.0708 (6)0.0955 (7)0.0202 (4)0.0081 (4)0.0067 (5)
Cl30.0354 (4)0.0872 (7)0.1111 (8)0.0204 (4)0.0241 (4)0.0139 (6)
Cl40.0855 (6)0.0608 (5)0.0616 (5)0.0230 (4)0.0318 (4)0.0043 (4)
Geometric parameters (Å, º) top
C1—C61.384 (4)C5—H50.9300
C1—C21.384 (4)C6—H60.9300
C1—N11.413 (3)C7—O11.215 (3)
C2—C31.378 (4)C7—N11.334 (3)
C2—H20.9300C7—C81.521 (4)
C3—C41.376 (4)C8—Cl31.754 (3)
C3—Cl11.723 (3)C8—Cl41.756 (3)
C4—C51.378 (4)C8—H80.9800
C4—Cl21.723 (3)N1—H1N0.78 (3)
C5—C61.375 (4)
C6—C1—C2120.0 (2)C5—C6—C1119.0 (2)
C6—C1—N1122.8 (2)C5—C6—H6120.5
C2—C1—N1117.2 (2)C1—C6—H6120.5
C3—C2—C1120.1 (2)O1—C7—N1125.0 (2)
C3—C2—H2120.0O1—C7—C8121.4 (2)
C1—C2—H2120.0N1—C7—C8113.6 (2)
C4—C3—C2120.2 (2)C7—C8—Cl3108.0 (2)
C4—C3—Cl1121.1 (2)C7—C8—Cl4108.81 (17)
C2—C3—Cl1118.7 (2)Cl3—C8—Cl4111.21 (14)
C3—C4—C5119.3 (2)C7—C8—H8109.6
C3—C4—Cl2120.9 (2)Cl3—C8—H8109.6
C5—C4—Cl2119.8 (2)Cl4—C8—H8109.6
C6—C5—C4121.4 (3)C7—N1—C1125.8 (2)
C6—C5—H5119.3C7—N1—H1N118 (2)
C4—C5—H5119.3C1—N1—H1N115 (2)
C6—C1—C2—C32.3 (4)C2—C1—C6—C51.8 (4)
N1—C1—C2—C3178.7 (2)N1—C1—C6—C5179.3 (2)
C1—C2—C3—C40.9 (4)O1—C7—C8—Cl369.7 (3)
C1—C2—C3—Cl1178.1 (2)N1—C7—C8—Cl3109.7 (2)
C2—C3—C4—C50.9 (4)O1—C7—C8—Cl451.1 (3)
Cl1—C3—C4—C5180.0 (2)N1—C7—C8—Cl4129.4 (2)
C2—C3—C4—Cl2178.3 (2)O1—C7—N1—C14.4 (4)
Cl1—C3—C4—Cl20.7 (3)C8—C7—N1—C1176.2 (2)
C3—C4—C5—C61.4 (4)C6—C1—N1—C732.8 (4)
Cl2—C4—C5—C6177.8 (2)C2—C1—N1—C7148.3 (3)
C4—C5—C6—C10.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.78 (3)2.08 (3)2.852 (3)171 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H5Cl4NO
Mr272.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)11.898 (5), 10.310 (3), 9.212 (2)
β (°) 111.23 (3)
V3)1053.3 (6)
Z4
Radiation typeCu Kα
µ (mm1)9.93
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.120, 0.138
No. of measured, independent and
observed [I > 2σ(I)] reflections
2954, 1877, 1690
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.07
No. of reflections1877
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.37

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.78 (3)2.08 (3)2.852 (3)171 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds