Download citation
Download citation
link to html
The title compound, [K2(C4H8O)6(C12H10N)2], contains two K atoms which are coordinated by two bridging diphenyl­amide ligands to yield a centrosymmetric four-membered KNKN ring. Each K atom is additionally coordinated by three mol­ecules of tetra­hydro­furan, yielding a square pyramid in which one tetra­hydro­furan mol­ecule occupies the apical position. One CH2 group and four H atoms are disordered equally over two positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037439/bt2447sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037439/bt2447Isup2.hkl
Contains datablock I

CCDC reference: 660065

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.060
  • wR factor = 0.169
  • Data-to-parameter ratio = 20.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C14
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.28 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C20 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C22 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for K1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15A PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C17 PLAT301_ALERT_3_C Main Residue Disorder ......................... 3.00 Perc. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.24 Ratio PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 29.50 Deg. C15A -C14 -C15 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 28.80 Deg. H14A -C14 -H14C 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 28.20 Deg. H14B -C14 -H14D 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 29.20 Deg. C15 -C16 -C15A 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 27.70 Deg. H16B -C16 -H16C 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 29.20 Deg. H16A -C16 -H16D 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 14 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

One the one hand, potassium diphenylamide has been used for the synthesis of various transition metal diphenylamides, for example those of Cr (Seidel & Reichardt, 1974), Pd (Villanueva et al., 1994), Th (Barnhart et al., 1995), Nb (Tayebani et al., 1998), Y and Sm (Gamer et al., 2001), Yb (Hitchcock et al., 2002), and Re (Hevia et al., 2002). On the other hand, lactones and α,β-unsaturated cycloketones (Longi et al., 1965), octamethylcyclotetrasiloxane (Kucera & Jelinek, 1959), and isocyanates (Grogler & Windemuth, 1966) could be polymerized with potassium diphenylamide as a catalyst. Though this compound is often cited in literature (Barnhart et al., 1995; Bergstrom et al., 1942; Cheshko & Goncharenko, 1971; Fröhlich, 1975), neither an exact synthetic approach nor structural or spectroscopic data have been published. Here we present a straightforward synthesis of potassium diphenylamide and the first molecular structure of a simple potassium amide. KNPh2 was made of potassium and diphenylamine in boiling THF. Cooling a solution to -90 °C led to the formation of single crystals of (thf)3K(µ2-NPh2)2K(thf)3. In the crystalline state, potassium diphenylamide forms a dimeric centrosymmetric molecule with a four-membered KNKiNi ring [symmetry code: (i) 2 - x, 1 - y, -z]. Additionally, each K atom is saturated with three THF molecules. The coordination sphere of K is square-pyramidal with O2 occupying the apical position and N1, N1i, O1, and O3 lying on the basal positions.

Related literature top

Synthesis of various transition metal diphenylamides: Seidel & Reichardt (1974); Villanueva et al. (1994); Barnhart et al. (1995); Tayebani et al. (1998); Gamer et al. (2001); Hitchcock et al. (2002); Hevia et al. (2002). Potassium diphenylamide as a catalyst in polymerization reactions: Longi et al. (1965); Kucera & Jelinek (1959); Grogler & Windemuth (1966). Synthesis of the title compound: Barnhart et al. (1995); Bergstrom et al. (1942); Cheshko & Goncharenko (1971); Fröhlich (1975).

Experimental top

All manipulations were carried out in an atmosphere of argon using standard Schlenk techniques. THF was dried (Na/benzophenone) and distilled prior to use. K and diphenylamine were purchased form Aldrich. 1H NMR and 13C NMR spectra were recorded at [D8]THF solution at ambient temperature on a Bruker AC 400 MHz s pectrometer and were referenced to deuterated THF as an internal standard. A suspension of potassium (4.4 g, 112.5 mmol) and diphenylamine (15.2 g, 90.0 mmol, 0.8 eq.) in THF (100 ml) was heated under reflux for 2 h. Thereafter the suspension was cooled to ambient temperature and the excess of K was removed by filtation. The yield of 92% was determined by acidic titration of an hydrolysed aliquot. Cooling of this solution to -90 °C yields single crystals within 12 h, which were suitable for X-ray diffraction studies. Physical data: Mp: 100 °C (decomposition). 1H NMR (400 MHz) δ 1.77 (thf), 3.60 (thf), 6.12–6.18 (m, 4H), 6.85–6.87 (m, 16H). 13C NMR (100 MHz) δ 25.2 (thf), 67.3 (thf), 112.1 (4 C, p–C), 118.0 (8 C, o–C), 129.7 (8 C, m–C), 158.5 (4 C, i–C).

Refinement top

All hydrogen atoms were calculated at idealized positions with Caromatic—H = 0.95Å or C-methylene-H = 0.99Å and were refined with 1.5 times the isotropic displacement parameter of the corresponding carbon atoms. The tetrahydrofuran carbon atom C15 has a 50:50 occupancy disorder over two positions. Although the other tetrahedrofuran carbon atoms show high values for U(eq) no disorder could be resolved.

Structure description top

One the one hand, potassium diphenylamide has been used for the synthesis of various transition metal diphenylamides, for example those of Cr (Seidel & Reichardt, 1974), Pd (Villanueva et al., 1994), Th (Barnhart et al., 1995), Nb (Tayebani et al., 1998), Y and Sm (Gamer et al., 2001), Yb (Hitchcock et al., 2002), and Re (Hevia et al., 2002). On the other hand, lactones and α,β-unsaturated cycloketones (Longi et al., 1965), octamethylcyclotetrasiloxane (Kucera & Jelinek, 1959), and isocyanates (Grogler & Windemuth, 1966) could be polymerized with potassium diphenylamide as a catalyst. Though this compound is often cited in literature (Barnhart et al., 1995; Bergstrom et al., 1942; Cheshko & Goncharenko, 1971; Fröhlich, 1975), neither an exact synthetic approach nor structural or spectroscopic data have been published. Here we present a straightforward synthesis of potassium diphenylamide and the first molecular structure of a simple potassium amide. KNPh2 was made of potassium and diphenylamine in boiling THF. Cooling a solution to -90 °C led to the formation of single crystals of (thf)3K(µ2-NPh2)2K(thf)3. In the crystalline state, potassium diphenylamide forms a dimeric centrosymmetric molecule with a four-membered KNKiNi ring [symmetry code: (i) 2 - x, 1 - y, -z]. Additionally, each K atom is saturated with three THF molecules. The coordination sphere of K is square-pyramidal with O2 occupying the apical position and N1, N1i, O1, and O3 lying on the basal positions.

Synthesis of various transition metal diphenylamides: Seidel & Reichardt (1974); Villanueva et al. (1994); Barnhart et al. (1995); Tayebani et al. (1998); Gamer et al. (2001); Hitchcock et al. (2002); Hevia et al. (2002). Potassium diphenylamide as a catalyst in polymerization reactions: Longi et al. (1965); Kucera & Jelinek (1959); Grogler & Windemuth (1966). Synthesis of the title compound: Barnhart et al. (1995); Bergstrom et al. (1942); Cheshko & Goncharenko (1971); Fröhlich (1975).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoides and the atom-numbering scheme. H atoms have been omitted for clarity.
Bis(µ-diphenylamido-κ2N:N)bis[tris(tetrahydrofuran-κO)potassium(I)] top
Crystal data top
[K2(C4H8O)6(C12H10N)2]F(000) = 912
Mr = 847.24Dx = 1.178 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15517 reflections
a = 9.6546 (3) Åθ = 2.8–27.5°
b = 13.9660 (8) ŵ = 0.25 mm1
c = 17.7356 (9) ÅT = 183 K
β = 92.639 (3)°Prism, colourless
V = 2388.9 (2) Å30.05 × 0.05 × 0.04 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
5438 independent reflections
Radiation source: fine-focus sealed tube3612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1012
Tmin = 0.977, Tmax = 0.997k = 1815
15517 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0746P)2 + 1.881P]
where P = (Fo2 + 2Fc2)/3
5438 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[K2(C4H8O)6(C12H10N)2]V = 2388.9 (2) Å3
Mr = 847.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6546 (3) ŵ = 0.25 mm1
b = 13.9660 (8) ÅT = 183 K
c = 17.7356 (9) Å0.05 × 0.05 × 0.04 mm
β = 92.639 (3)°
Data collection top
Nonius KappaCCD
diffractometer
5438 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3612 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.997Rint = 0.050
15517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 0.95Δρmax = 0.39 e Å3
5438 reflectionsΔρmin = 0.30 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.93906 (6)0.41278 (4)0.08773 (3)0.04375 (18)
O10.7561 (2)0.26550 (15)0.09945 (12)0.0612 (6)
O21.1232 (2)0.3131 (2)0.17851 (13)0.0791 (7)
O30.8091 (2)0.48090 (16)0.20882 (12)0.0649 (6)
N11.0160 (2)0.60408 (14)0.06975 (11)0.0385 (5)
C10.9378 (2)0.68619 (17)0.06408 (12)0.0353 (5)
C20.7919 (3)0.67893 (18)0.07046 (14)0.0401 (6)
H2A0.75300.61910.08360.048*
C30.7053 (3)0.7565 (2)0.05804 (14)0.0456 (6)
H3A0.60820.74870.06240.055*
C40.7564 (3)0.8449 (2)0.03953 (15)0.0482 (6)
H4A0.69600.89790.03130.058*
C50.8984 (3)0.8547 (2)0.03313 (15)0.0473 (6)
H5A0.93550.91520.02010.057*
C60.9866 (3)0.77787 (19)0.04540 (14)0.0414 (6)
H6A1.08330.78710.04110.050*
C71.1538 (2)0.60788 (17)0.09161 (13)0.0376 (5)
C81.2149 (3)0.6754 (2)0.14269 (14)0.0451 (6)
H8A1.15910.72480.16220.054*
C91.3538 (3)0.6710 (2)0.16476 (17)0.0548 (7)
H9A1.39120.71750.19900.066*
C101.4393 (3)0.6009 (2)0.13837 (18)0.0574 (8)
H10A1.53490.59920.15360.069*
C111.3826 (3)0.5329 (2)0.08893 (17)0.0518 (7)
H11A1.43980.48380.07020.062*
C121.2436 (3)0.53584 (19)0.06666 (14)0.0424 (6)
H12A1.20720.48780.03340.051*
C130.6390 (3)0.2422 (2)0.05079 (19)0.0605 (8)
H13A0.65490.26230.00160.073*
H13B0.55480.27480.06770.073*
C140.6220 (5)0.1361 (3)0.0549 (3)0.1017 (15)
H14A0.53620.11910.08020.122*0.50
H14B0.61850.10750.00370.122*0.50
H14C0.52260.11860.05320.122*0.50
H14D0.66650.10460.01220.122*0.50
C150.7479 (10)0.1027 (7)0.1000 (6)0.091 (3)*0.50
H15A0.72100.05570.13850.109*0.50
H15B0.81360.07140.06660.109*0.50
C15A0.6902 (7)0.1071 (5)0.1273 (4)0.0568 (15)*0.50
H15C0.72620.04080.12520.068*0.50
H15D0.62670.11260.16940.068*0.50
C160.8095 (4)0.1814 (2)0.13461 (19)0.0685 (9)
H16A0.91120.17850.13010.082*0.50
H16B0.78990.18190.18890.082*0.50
H16C0.83590.19360.18830.082*0.50
H16D0.89200.15820.10890.082*0.50
C171.2484 (4)0.2853 (2)0.14584 (18)0.0630 (8)
H17A1.26640.32620.10180.076*
H17B1.24270.21780.12890.076*
C181.3586 (4)0.2967 (4)0.2044 (2)0.0874 (12)
H18A1.37320.23650.23310.105*
H18B1.44680.31520.18200.105*
C191.3105 (5)0.3717 (3)0.2526 (2)0.0923 (14)
H19A1.33120.43580.23200.111*
H19B1.35280.36630.30430.111*
C201.1599 (5)0.3541 (4)0.2516 (2)0.1056 (17)
H20A1.13710.30910.29240.127*
H20B1.10910.41470.25870.127*
C210.7134 (4)0.4283 (3)0.2490 (2)0.0849 (11)
H21A0.73620.35920.24790.102*
H21B0.61850.43730.22660.102*
C220.7228 (6)0.4653 (4)0.3292 (3)0.1159 (18)
H22A0.72290.41190.36590.139*
H22B0.64470.50890.33880.139*
C230.8591 (6)0.5181 (3)0.3334 (2)0.0988 (15)
H23A0.85740.57180.36980.119*
H23B0.93670.47460.34810.119*
C240.8709 (4)0.5535 (3)0.2550 (2)0.0758 (10)
H24A0.82110.61500.24760.091*
H24B0.96930.56280.24330.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0544 (4)0.0404 (3)0.0360 (3)0.0079 (3)0.0027 (2)0.0040 (2)
O10.0723 (14)0.0476 (12)0.0624 (13)0.0130 (10)0.0101 (10)0.0041 (10)
O20.0575 (13)0.122 (2)0.0572 (14)0.0033 (13)0.0079 (10)0.0204 (14)
O30.0830 (15)0.0614 (13)0.0510 (12)0.0142 (11)0.0104 (10)0.0085 (10)
N10.0393 (11)0.0356 (11)0.0404 (11)0.0056 (8)0.0010 (8)0.0034 (9)
C10.0412 (13)0.0376 (13)0.0271 (11)0.0048 (10)0.0001 (9)0.0035 (9)
C20.0425 (13)0.0396 (14)0.0382 (13)0.0068 (11)0.0003 (10)0.0015 (10)
C30.0423 (14)0.0528 (16)0.0415 (14)0.0012 (12)0.0016 (10)0.0049 (12)
C40.0566 (17)0.0420 (15)0.0451 (15)0.0080 (12)0.0068 (12)0.0009 (12)
C50.0627 (17)0.0390 (15)0.0399 (14)0.0062 (12)0.0028 (12)0.0009 (11)
C60.0464 (14)0.0422 (14)0.0358 (13)0.0076 (11)0.0024 (10)0.0009 (11)
C70.0410 (13)0.0397 (14)0.0322 (12)0.0056 (10)0.0029 (9)0.0035 (10)
C80.0460 (15)0.0482 (15)0.0407 (14)0.0059 (11)0.0008 (11)0.0037 (11)
C90.0495 (16)0.0614 (19)0.0526 (17)0.0123 (14)0.0078 (12)0.0009 (14)
C100.0407 (15)0.066 (2)0.0649 (19)0.0081 (14)0.0023 (13)0.0171 (16)
C110.0483 (16)0.0523 (17)0.0556 (17)0.0054 (13)0.0112 (12)0.0158 (13)
C120.0494 (15)0.0396 (14)0.0384 (13)0.0001 (11)0.0039 (10)0.0050 (11)
C130.0472 (16)0.070 (2)0.0640 (19)0.0076 (14)0.0014 (13)0.0084 (16)
C140.115 (3)0.075 (3)0.112 (3)0.039 (2)0.035 (3)0.002 (2)
C160.084 (2)0.065 (2)0.0558 (19)0.0097 (17)0.0108 (16)0.0130 (16)
C170.082 (2)0.0509 (18)0.0555 (18)0.0011 (16)0.0028 (16)0.0037 (14)
C180.067 (2)0.126 (4)0.069 (2)0.008 (2)0.0059 (18)0.003 (2)
C190.136 (4)0.094 (3)0.046 (2)0.045 (3)0.000 (2)0.0012 (19)
C200.127 (4)0.144 (4)0.047 (2)0.074 (3)0.014 (2)0.005 (2)
C210.090 (3)0.088 (3)0.079 (3)0.014 (2)0.019 (2)0.010 (2)
C220.155 (5)0.114 (4)0.084 (3)0.012 (4)0.062 (3)0.011 (3)
C230.153 (4)0.089 (3)0.054 (2)0.034 (3)0.007 (2)0.011 (2)
C240.101 (3)0.061 (2)0.065 (2)0.0071 (19)0.0024 (19)0.0148 (17)
Geometric parameters (Å, º) top
K1—O32.709 (2)C12—K1i3.268 (3)
K1—O22.725 (2)C12—H12A0.9500
K1—O12.726 (2)C13—C141.492 (5)
K1—N12.795 (2)C13—H13A0.9900
K1—N1i2.856 (2)C13—H13B0.9900
K1—C12i3.268 (3)C14—C15A1.474 (8)
K1—C7i3.277 (2)C14—C151.499 (10)
K1—C1i3.297 (2)C14—H14A0.9900
K1—C73.423 (2)C14—H14B0.9900
K1—C123.441 (3)C14—H14C0.9900
K1—K1i4.1643 (11)C14—H14D0.9900
O1—C161.416 (4)C15—C161.380 (10)
O1—C131.428 (4)C15—H15A0.9900
O2—C171.418 (4)C15—H15B0.9900
O2—C201.446 (5)C15A—C161.551 (7)
O3—C211.401 (4)C15A—H15C0.9900
O3—C241.418 (4)C15A—H15D0.9900
N1—C71.370 (3)C16—H16A0.9900
N1—C11.374 (3)C16—H16B0.9900
N1—K1i2.856 (2)C16—H16C0.9900
C1—C61.409 (3)C16—H16D0.9900
C1—C21.422 (3)C17—C181.461 (5)
C1—K1i3.297 (2)C17—H17A0.9900
C2—C31.380 (4)C17—H17B0.9900
C2—H2A0.9500C18—C191.442 (6)
C3—C41.375 (4)C18—H18A0.9900
C3—H3A0.9500C18—H18B0.9900
C4—C51.387 (4)C19—C201.473 (6)
C4—H4A0.9500C19—H19A0.9900
C5—C61.381 (4)C19—H19B0.9900
C5—H5A0.9500C20—H20A0.9900
C6—H6A0.9500C20—H20B0.9900
C7—C81.418 (3)C21—C221.511 (6)
C7—C121.412 (4)C21—H21A0.9900
C7—K1i3.277 (2)C21—H21B0.9900
C8—C91.380 (4)C22—C231.508 (7)
C8—H8A0.9500C22—H22A0.9900
C9—C101.377 (4)C22—H22B0.9900
C9—H9A0.9500C23—C241.486 (5)
C10—C111.389 (4)C23—H23A0.9900
C10—H10A0.9500C23—H23B0.9900
C11—C121.381 (4)C24—H24A0.9900
C11—H11A0.9500C24—H24B0.9900
O3—K1—O291.40 (8)C11—C12—K1141.01 (18)
O3—K1—O183.05 (7)C7—C12—K177.40 (14)
O2—K1—O188.67 (7)K1i—C12—K176.69 (6)
O3—K1—N183.69 (6)C11—C12—H12A118.9
O2—K1—N1112.72 (7)C7—C12—H12A118.9
O1—K1—N1155.04 (7)K1i—C12—H12A57.7
O3—K1—N1i154.28 (7)K1—C12—H12A54.6
O2—K1—N1i114.29 (7)O1—C13—C14106.4 (3)
O1—K1—N1i98.08 (6)O1—C13—H13A110.4
N1—K1—N1i85.07 (6)C14—C13—H13A110.4
O3—K1—C12i109.59 (7)O1—C13—H13B110.4
O2—K1—C12i156.84 (8)C14—C13—H13B110.4
O1—K1—C12i84.43 (6)H13A—C13—H13B108.6
N1—K1—C12i80.24 (6)C15A—C14—C1529.5 (4)
N1i—K1—C12i45.49 (6)C15A—C14—C13105.6 (4)
O3—K1—C7i133.17 (7)C15—C14—C13104.3 (4)
O2—K1—C7i132.08 (8)C15A—C14—H14A83.5
O1—K1—C7i81.85 (6)C15—C14—H14A110.9
N1—K1—C7i92.05 (6)C13—C14—H14A110.9
N1i—K1—C7i24.59 (6)C15A—C14—H14B133.0
C12i—K1—C7i24.92 (6)C15—C14—H14B110.9
O3—K1—C1i172.86 (6)C13—C14—H14B110.9
O2—K1—C1i91.05 (7)H14A—C14—H14B108.9
O1—K1—C1i90.30 (6)C15A—C14—H14C110.6
N1—K1—C1i101.53 (6)C15—C14—H14C134.4
N1i—K1—C1i24.49 (6)C13—C14—H14C110.6
C12i—K1—C1i66.97 (6)H14A—C14—H14C28.8
C7i—K1—C1i42.55 (6)H14B—C14—H14C83.1
O3—K1—C790.39 (6)C15A—C14—H14D110.6
O2—K1—C790.97 (7)C15—C14—H14D84.3
O1—K1—C7173.42 (7)C13—C14—H14D110.6
N1—K1—C722.70 (6)H14A—C14—H14D129.9
N1i—K1—C788.06 (6)H14B—C14—H14D28.2
C12i—K1—C798.34 (6)H14C—C14—H14D108.7
C7i—K1—C7103.18 (5)C16—C15—C14108.1 (6)
C1i—K1—C796.27 (6)C16—C15—H15A110.1
O3—K1—C12109.88 (7)C14—C15—H15A110.1
O2—K1—C1277.41 (7)C16—C15—H15B110.1
O1—K1—C12160.97 (7)C14—C15—H15B110.1
N1—K1—C1243.72 (6)H15A—C15—H15B108.4
N1i—K1—C1276.47 (6)C14—C15A—C16100.9 (4)
C12i—K1—C12103.31 (6)C14—C15A—H15C111.6
C7i—K1—C1297.79 (6)C16—C15A—H15C111.6
C1i—K1—C1277.21 (6)C14—C15A—H15D111.6
C7—K1—C1223.75 (6)C16—C15A—H15D111.6
O3—K1—K1i122.96 (5)H15C—C15A—H15D109.4
O2—K1—K1i122.77 (6)C15—C16—O1108.9 (4)
O1—K1—K1i134.82 (5)C15—C16—C15A29.2 (4)
N1—K1—K1i43.10 (4)O1—C16—C15A105.3 (3)
N1i—K1—K1i41.97 (4)C15—C16—H16A109.9
C12i—K1—K1i53.53 (5)O1—C16—H16A109.9
C7i—K1—K1i53.16 (4)C15A—C16—H16A134.6
C1i—K1—K1i60.66 (4)C15—C16—H16B109.9
C7—K1—K1i50.02 (4)O1—C16—H16B109.9
C12—K1—K1i49.79 (4)C15A—C16—H16B84.9
C16—O1—C13109.8 (2)H16A—C16—H16B108.3
C16—O1—K1115.80 (18)C15—C16—H16C130.7
C13—O1—K1128.60 (18)O1—C16—H16C110.7
C17—O2—C20107.2 (3)C15A—C16—H16C110.7
C17—O2—K1116.32 (18)H16A—C16—H16C82.7
C20—O2—K1117.0 (2)H16B—C16—H16C27.7
C21—O3—C24110.6 (3)C15—C16—H16D82.8
C21—O3—K1124.0 (2)O1—C16—H16D110.7
C24—O3—K1120.7 (2)C15A—C16—H16D110.7
C7—N1—C1120.8 (2)H16A—C16—H16D29.2
C7—N1—K1105.35 (14)H16B—C16—H16D130.1
C1—N1—K1131.14 (15)H16C—C16—H16D108.8
C7—N1—K1i95.21 (14)O2—C17—C18106.6 (3)
C1—N1—K1i96.02 (14)O2—C17—H17A110.4
K1—N1—K1i94.93 (6)C18—C17—H17A110.4
N1—C1—C6126.0 (2)O2—C17—H17B110.4
N1—C1—C2118.5 (2)C18—C17—H17B110.4
C6—C1—C2115.2 (2)H17A—C17—H17B108.6
N1—C1—K1i59.49 (12)C19—C18—C17104.8 (4)
C6—C1—K1i92.98 (14)C19—C18—H18A110.8
C2—C1—K1i115.53 (15)C17—C18—H18A110.8
C3—C2—C1121.8 (2)C19—C18—H18B110.8
C3—C2—H2A119.1C17—C18—H18B110.8
C1—C2—H2A119.1H18A—C18—H18B108.9
C4—C3—C2121.4 (2)C18—C19—C20102.5 (3)
C4—C3—H3A119.3C18—C19—H19A111.3
C2—C3—H3A119.3C20—C19—H19A111.3
C3—C4—C5118.4 (3)C18—C19—H19B111.3
C3—C4—H4A120.8C20—C19—H19B111.3
C5—C4—H4A120.8H19A—C19—H19B109.2
C6—C5—C4121.0 (3)O2—C20—C19106.1 (3)
C6—C5—H5A119.5O2—C20—H20A110.5
C4—C5—H5A119.5C19—C20—H20A110.5
C5—C6—C1122.2 (2)O2—C20—H20B110.5
C5—C6—H6A118.9C19—C20—H20B110.5
C1—C6—H6A118.9H20A—C20—H20B108.7
N1—C7—C8125.2 (2)O3—C21—C22106.7 (4)
N1—C7—C12119.1 (2)O3—C21—H21A110.4
C8—C7—C12115.5 (2)C22—C21—H21A110.4
N1—C7—K1i60.20 (12)O3—C21—H21B110.4
C8—C7—K1i140.00 (17)C22—C21—H21B110.4
C12—C7—K1i77.16 (14)H21A—C21—H21B108.6
N1—C7—K151.96 (12)C21—C22—C23103.2 (3)
C8—C7—K1140.94 (17)C21—C22—H22A111.1
C12—C7—K178.85 (14)C23—C22—H22A111.1
K1i—C7—K176.82 (5)C21—C22—H22B111.1
C9—C8—C7121.4 (3)C23—C22—H22B111.1
C9—C8—H8A119.3H22A—C22—H22B109.1
C7—C8—H8A119.3C24—C23—C22102.7 (4)
C10—C9—C8121.7 (3)C24—C23—H23A111.2
C10—C9—H9A119.1C22—C23—H23A111.2
C8—C9—H9A119.1C24—C23—H23B111.2
C9—C10—C11118.4 (3)C22—C23—H23B111.2
C9—C10—H10A120.8H23A—C23—H23B109.1
C11—C10—H10A120.8O3—C24—C23104.7 (3)
C12—C11—C10120.6 (3)O3—C24—H24A110.8
C12—C11—H11A119.7C23—C24—H24A110.8
C10—C11—H11A119.7O3—C24—H24B110.8
C11—C12—C7122.3 (3)C23—C24—H24B110.8
C11—C12—K1i136.53 (17)H24A—C24—H24B108.9
C7—C12—K1i77.91 (14)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[K2(C4H8O)6(C12H10N)2]
Mr847.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)9.6546 (3), 13.9660 (8), 17.7356 (9)
β (°) 92.639 (3)
V3)2388.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.05 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.977, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
15517, 5438, 3612
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.169, 0.95
No. of reflections5438
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Siemens, 1990), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds