Download citation
Download citation
link to html
The title compound, {[K(C12H10N)(C4H8O2)2]·C4H8O2}n, contains a K atom surrounded by two bridging diphenyl­amido ligands and three mol­ecules of dioxane. Two of these dioxane ligands are located on a centre of inversion and form bridges to neighbouring K atoms, yielding two-dimensional layers. The K atom is in a distorted square-pyramidal environment in which one bridging dioxane mol­ecule occupies the apical position.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037427/bt2446sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037427/bt2446Isup2.hkl
Contains datablock I

CCDC reference: 660064

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.107
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.32 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the past, potassium diphenylamide has been used for the synthesis of a lot of transition metal diphenylamides, for example those of Cr (Seidel & Reichardt, 1974), Pd (Villanueva et al., 1994), Th (Barnhart et al., 1995), Nb (Tayebani et al., 1998), Y and Sm (Gamer et al., 2001), Yb (Hitchcock et al., 2002), and Re (Hevia et al., 2002). Potassium diphenylamide also served as a catalyst in the polymerization of lactones and α,β-unsaturated cycloketones (Longi et al., 1965), octamethylcyclotetrasiloxane (Kucera & Jelinek, 1959), and isocyanates (Grogler & Windemuth, 1966). This compound is often mentioned in literature (Barnhart et al., 1995; Bergstrom et al., 1942; Cheshko & Goncharenko, 1971; Fröhlich, 1975), but neither a complete synthetic method nor structural or spectroscopic data have been published. The reaction of potassium with diphenylamine in boiling THF gives (thf)3K(µ2-NPh2)2K(thf)3. Recrystallization from hot dioxane yields single crystals of [(µ-O,O'-dx)(dx-O)K(µ-NPh2)] ((I)) at ambient temperature. In the molecular structure of (I), potassium diphenylamide forms a dimeric molecule with a centosymmetric four-membered KNKiNi ring [symmetry code: (i) 2 - x, 1 - y, -z]. Additionally, each K atom is saturated with three molecules of dioxane, two of them are attached to neighbouring K atoms with the other oxygen atom. This leads to the formation of parallel layers parallel to (001). The coordination sphere of K is distorted square-pyramidal with O4 occupying the apical position and N1, N1i, O1, and O3 lying on the basal positions. The compound cocrystallizes with a molecule of dioxane in the asymmetric unit.

Related literature top

For the synthesis of transition metal diphenylamides, see: Seidel & Reichardt (1974); Villanueva et al. (1994); Barnhart et al. (1995); Tayebani et al. (1998); Gamer et al. (2001); Hitchcock et al. (2002); Hevia et al. (2002). For potassium diphenylamide as a catalyst in polymerization reactions, see: Longi et al. (1965); Kucera & Jelinek (1959); Grogler & Windemuth (1966). For the synthesis of the title compound, see: Barnhart et al. (1995); Bergstrom et al. (1942); Cheshko & Goncharenko (1971); Fröhlich (1975). For the synthesis and crystal structure of bis[tris(tetrahydrofuran-O)(µ2-diphenylamido)potassium], see: Gärtner et al. (2007).

Experimental top

All manipulations were carried out in an atmosphere of argon using standard Schlenk techniques. THF, diethyl ether and dioxane were dried (Na/benzophenone) and distilled prior to use. K and diphenylamine were purchased form Aldrich. 1H NMR and 13C NMR spectra were recorded at [D8]THF solution at ambient temperature on a Bruker AC 400 MHz s pectrometer and were referenced to deuterated THF as an internal standard.

Bis[tris(tetrahydrofuran-O)(µ2-diphenylamido)potassium] was prepared according to literature procedure (Gärtner et al., 2007) and recrystallized from hot 1,4-dioxane. Storage of this solution at ambient temperature led to the formation of single crystals within 12 h.

Physical data:

Mp: 90°C (decomposition).

1H NMR (400 MHz) δ 3.56 (dx), 6.14–6.18 (m, 2H), 6.85–6.90 (m, 8H).

13C NMR (100 MHz) δ 67.7 (dx), 112.3 (2 C, p–C), 118.0 (4 C, o–C), 129.7 (4 C, m–C), 158.3 (2 C, i–C).

MS (DEI, m/z [% '[%' %]]): 208 (M+, [1]).

IR (cm-1): 1592, 1570, 1551, 1313, 1255, 1212, 1165, 1118, 1080, 1047, 985, 888, 871, 798, 753, 710, 700, 613, 523, 503.

Refinement top

All hydrogen atoms were calculated at idealized positions with Caromatic—H = 0.95Å or C-methylene-H = 0.99Å and were refined with 1.5 times the isotropic displacement parameter of the corresponding carbon atoms.

Structure description top

In the past, potassium diphenylamide has been used for the synthesis of a lot of transition metal diphenylamides, for example those of Cr (Seidel & Reichardt, 1974), Pd (Villanueva et al., 1994), Th (Barnhart et al., 1995), Nb (Tayebani et al., 1998), Y and Sm (Gamer et al., 2001), Yb (Hitchcock et al., 2002), and Re (Hevia et al., 2002). Potassium diphenylamide also served as a catalyst in the polymerization of lactones and α,β-unsaturated cycloketones (Longi et al., 1965), octamethylcyclotetrasiloxane (Kucera & Jelinek, 1959), and isocyanates (Grogler & Windemuth, 1966). This compound is often mentioned in literature (Barnhart et al., 1995; Bergstrom et al., 1942; Cheshko & Goncharenko, 1971; Fröhlich, 1975), but neither a complete synthetic method nor structural or spectroscopic data have been published. The reaction of potassium with diphenylamine in boiling THF gives (thf)3K(µ2-NPh2)2K(thf)3. Recrystallization from hot dioxane yields single crystals of [(µ-O,O'-dx)(dx-O)K(µ-NPh2)] ((I)) at ambient temperature. In the molecular structure of (I), potassium diphenylamide forms a dimeric molecule with a centosymmetric four-membered KNKiNi ring [symmetry code: (i) 2 - x, 1 - y, -z]. Additionally, each K atom is saturated with three molecules of dioxane, two of them are attached to neighbouring K atoms with the other oxygen atom. This leads to the formation of parallel layers parallel to (001). The coordination sphere of K is distorted square-pyramidal with O4 occupying the apical position and N1, N1i, O1, and O3 lying on the basal positions. The compound cocrystallizes with a molecule of dioxane in the asymmetric unit.

For the synthesis of transition metal diphenylamides, see: Seidel & Reichardt (1974); Villanueva et al. (1994); Barnhart et al. (1995); Tayebani et al. (1998); Gamer et al. (2001); Hitchcock et al. (2002); Hevia et al. (2002). For potassium diphenylamide as a catalyst in polymerization reactions, see: Longi et al. (1965); Kucera & Jelinek (1959); Grogler & Windemuth (1966). For the synthesis of the title compound, see: Barnhart et al. (1995); Bergstrom et al. (1942); Cheshko & Goncharenko (1971); Fröhlich (1975). For the synthesis and crystal structure of bis[tris(tetrahydrofuran-O)(µ2-diphenylamido)potassium], see: Gärtner et al. (2007).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% prabability displacement ellipsoides and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of one layer. H atoms have been omitted for clarity.
Poly[[µ-dioxane-κ2O:O'-dioxane-κO-µ-diphenylamido-κ2N:N-\ potassium] dioxane solvate] top
Crystal data top
[K(C12H10N)(C4H8O2)2]·C4H8O2Z = 2
Mr = 471.62F(000) = 504
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5417 (5) ÅCell parameters from 8425 reflections
b = 10.6758 (6) Åθ = 2.1–27.4°
c = 12.7711 (5) ŵ = 0.25 mm1
α = 70.419 (3)°T = 183 K
β = 86.123 (3)°Prism, colourless
γ = 66.278 (2)°0.06 × 0.06 × 0.05 mm
V = 1235.97 (10) Å3
Data collection top
Nonius KappaCCD
diffractometer
5472 independent reflections
Radiation source: fine-focus sealed tube3974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1312
Tmin = 0.967, Tmax = 0.987k = 1311
8425 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.0755P]
where P = (Fo2 + 2Fc2)/3
5472 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[K(C12H10N)(C4H8O2)2]·C4H8O2γ = 66.278 (2)°
Mr = 471.62V = 1235.97 (10) Å3
Triclinic, P1Z = 2
a = 10.5417 (5) ÅMo Kα radiation
b = 10.6758 (6) ŵ = 0.25 mm1
c = 12.7711 (5) ÅT = 183 K
α = 70.419 (3)°0.06 × 0.06 × 0.05 mm
β = 86.123 (3)°
Data collection top
Nonius KappaCCD
diffractometer
5472 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3974 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.987Rint = 0.029
8425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
5472 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.80940 (3)0.58975 (4)0.06727 (3)0.02744 (12)
O10.73827 (13)0.51425 (15)0.28382 (9)0.0402 (3)
O20.68752 (13)0.35147 (15)0.49469 (10)0.0424 (3)
O30.58105 (12)0.54644 (14)0.04898 (10)0.0352 (3)
O40.61613 (12)0.86555 (13)0.04205 (10)0.0368 (3)
O50.88112 (13)0.75650 (14)0.39904 (10)0.0433 (3)
O60.71297 (15)1.04991 (15)0.27924 (11)0.0492 (4)
N11.08797 (13)0.42696 (15)0.14643 (10)0.0259 (3)
C11.12229 (16)0.53691 (18)0.15025 (13)0.0245 (4)
C21.07544 (16)0.66780 (18)0.05752 (13)0.0281 (4)
H2A1.03000.67200.00610.034*
C31.09369 (18)0.7895 (2)0.05649 (15)0.0347 (4)
H3A1.05990.87520.00710.042*
C41.16059 (19)0.7883 (2)0.14690 (16)0.0388 (4)
H4A1.17360.87170.14600.047*
C51.20816 (18)0.6613 (2)0.23914 (16)0.0366 (4)
H5A1.25390.65860.30200.044*
C61.19035 (17)0.5389 (2)0.24136 (14)0.0308 (4)
H6A1.22460.45400.30560.037*
C71.16056 (16)0.28448 (18)0.21367 (12)0.0249 (4)
C81.09112 (18)0.18982 (19)0.24413 (13)0.0296 (4)
H8A0.99480.22780.22270.036*
C91.1595 (2)0.0436 (2)0.30425 (14)0.0357 (4)
H9A1.10930.01650.32350.043*
C101.2995 (2)0.0164 (2)0.33671 (14)0.0377 (5)
H10A1.34610.11700.37780.045*
C111.37052 (18)0.0734 (2)0.30805 (14)0.0349 (4)
H11A1.46690.03370.33010.042*
C121.30370 (17)0.21958 (19)0.24804 (13)0.0295 (4)
H12A1.35550.27810.22940.035*
C130.8367 (2)0.4525 (2)0.37896 (15)0.0424 (5)
H13A0.81920.52510.41610.051*
H13B0.93210.42690.35410.051*
C140.82513 (19)0.3192 (2)0.46008 (16)0.0420 (5)
H14A0.85000.24370.42480.050*
H14B0.89130.28040.52600.050*
C150.5912 (2)0.4105 (2)0.40013 (15)0.0388 (5)
H15A0.49570.43430.42450.047*
H15B0.61110.33750.36290.047*
C160.60096 (19)0.5448 (2)0.31960 (14)0.0365 (4)
H16A0.53410.58380.25410.044*
H16B0.57600.61960.35560.044*
C170.5678 (2)0.4124 (2)0.10436 (16)0.0408 (5)
H17A0.48990.42840.15310.061*
H17B0.65400.34160.15190.061*
C180.45827 (19)0.6481 (2)0.02155 (16)0.0374 (4)
H18A0.46890.74000.06150.056*
H18B0.37790.66970.02430.056*
C190.51208 (19)0.9214 (2)0.11231 (14)0.0392 (5)
H19A0.54080.97800.14600.059*
H19B0.50350.83950.17350.059*
C200.62656 (18)0.98288 (19)0.04698 (14)0.0322 (4)
H20A0.69620.94450.09680.048*
H20B0.65811.04070.01690.048*
C210.7750 (2)0.8442 (2)0.44988 (15)0.0436 (5)
H21A0.80300.81280.53010.052*
H21B0.68840.83110.44350.052*
C220.7485 (2)1.0009 (2)0.39619 (16)0.0507 (6)
H22A0.67171.05960.43130.061*
H22B0.83261.01530.40860.061*
C230.8202 (2)0.9608 (2)0.22953 (16)0.0429 (5)
H23A0.90730.97220.23770.051*
H23B0.79410.99240.14890.051*
C240.8439 (2)0.8044 (2)0.28301 (14)0.0392 (5)
H24A0.75820.79200.27170.047*
H24B0.91900.74450.24750.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.02222 (18)0.0292 (2)0.0288 (2)0.00831 (15)0.00330 (14)0.01012 (15)
O10.0457 (8)0.0467 (8)0.0278 (6)0.0231 (6)0.0062 (6)0.0072 (6)
O20.0423 (7)0.0463 (8)0.0301 (7)0.0195 (6)0.0013 (6)0.0002 (6)
O30.0338 (6)0.0393 (8)0.0407 (7)0.0212 (6)0.0021 (5)0.0155 (6)
O40.0379 (7)0.0247 (7)0.0328 (6)0.0029 (5)0.0073 (5)0.0045 (5)
O50.0380 (7)0.0413 (8)0.0410 (7)0.0046 (6)0.0057 (6)0.0148 (6)
O60.0516 (8)0.0381 (8)0.0445 (8)0.0112 (7)0.0051 (7)0.0067 (6)
N10.0259 (7)0.0243 (8)0.0247 (7)0.0097 (6)0.0015 (6)0.0048 (6)
C10.0210 (8)0.0273 (9)0.0251 (8)0.0088 (7)0.0051 (6)0.0105 (7)
C20.0257 (8)0.0295 (10)0.0275 (8)0.0103 (7)0.0059 (7)0.0096 (7)
C30.0354 (10)0.0285 (10)0.0403 (10)0.0138 (8)0.0148 (8)0.0131 (8)
C40.0376 (10)0.0376 (11)0.0567 (12)0.0226 (9)0.0221 (9)0.0290 (10)
C50.0291 (9)0.0478 (12)0.0447 (11)0.0168 (9)0.0091 (8)0.0295 (9)
C60.0271 (8)0.0341 (10)0.0303 (9)0.0093 (7)0.0027 (7)0.0138 (8)
C70.0272 (8)0.0276 (9)0.0200 (8)0.0101 (7)0.0044 (6)0.0100 (7)
C80.0309 (9)0.0327 (10)0.0272 (8)0.0145 (8)0.0037 (7)0.0107 (7)
C90.0496 (11)0.0315 (10)0.0297 (9)0.0212 (9)0.0084 (8)0.0097 (8)
C100.0498 (11)0.0252 (10)0.0290 (9)0.0072 (9)0.0024 (8)0.0080 (7)
C110.0309 (9)0.0336 (11)0.0311 (9)0.0024 (8)0.0005 (7)0.0125 (8)
C120.0273 (8)0.0328 (10)0.0281 (8)0.0113 (7)0.0051 (7)0.0117 (7)
C130.0433 (11)0.0502 (13)0.0381 (10)0.0249 (10)0.0028 (9)0.0129 (9)
C140.0380 (10)0.0400 (12)0.0398 (10)0.0109 (9)0.0039 (8)0.0084 (9)
C150.0379 (10)0.0422 (12)0.0332 (9)0.0171 (9)0.0020 (8)0.0077 (8)
C160.0403 (10)0.0331 (11)0.0294 (9)0.0109 (8)0.0015 (8)0.0072 (8)
C170.0466 (11)0.0386 (12)0.0405 (10)0.0233 (9)0.0045 (9)0.0081 (9)
C180.0341 (9)0.0324 (11)0.0475 (11)0.0127 (8)0.0035 (8)0.0165 (9)
C190.0388 (10)0.0320 (11)0.0302 (9)0.0044 (8)0.0078 (8)0.0037 (8)
C200.0330 (9)0.0313 (10)0.0337 (9)0.0132 (8)0.0081 (7)0.0134 (8)
C210.0491 (12)0.0400 (12)0.0324 (10)0.0091 (9)0.0039 (9)0.0119 (9)
C220.0660 (14)0.0420 (13)0.0418 (11)0.0167 (11)0.0051 (10)0.0177 (10)
C230.0393 (11)0.0545 (13)0.0372 (10)0.0230 (10)0.0071 (8)0.0140 (9)
C240.0355 (10)0.0505 (13)0.0345 (10)0.0160 (9)0.0029 (8)0.0196 (9)
Geometric parameters (Å, º) top
K1—O32.6659 (12)C8—C91.383 (2)
K1—O42.7478 (12)C8—H8A0.9500
K1—O12.7518 (12)C9—C101.379 (3)
K1—N12.7899 (13)C9—H9A0.9500
K1—N1i2.9022 (14)C10—C111.386 (3)
K1—C23.2154 (17)C10—H10A0.9500
K1—C13.3009 (16)C11—C121.381 (2)
K1—C1i3.3953 (16)C11—H11A0.9500
K1—C2i3.4006 (18)C12—H12A0.9500
K1—C7i3.4257 (15)C13—C141.499 (3)
K1—K1i4.2249 (7)C13—H13A0.9900
O1—C161.429 (2)C13—H13B0.9900
O1—C131.439 (2)C14—H14A0.9900
O2—C141.425 (2)C14—H14B0.9900
O2—C151.424 (2)C15—C161.496 (3)
O3—C171.427 (2)C15—H15A0.9900
O3—C181.427 (2)C15—H15B0.9900
O4—C201.419 (2)C16—H16A0.9900
O4—C191.436 (2)C16—H16B0.9900
O5—C211.420 (2)C17—C18ii1.501 (3)
O5—C241.422 (2)C17—H17A0.9900
O6—C231.424 (2)C17—H17B0.9900
O6—C221.428 (2)C18—C17ii1.501 (3)
N1—C11.376 (2)C18—H18A0.9900
N1—C71.383 (2)C18—H18B0.9900
N1—K1i2.9022 (14)C19—C20iii1.506 (2)
C1—C61.418 (2)C19—H19A0.9900
C1—C21.419 (2)C19—H19B0.9900
C1—K1i3.3953 (16)C20—C19iii1.506 (2)
C2—C31.384 (3)C20—H20A0.9900
C2—K1i3.4005 (18)C20—H20B0.9900
C2—H2A0.9500C21—C221.493 (3)
C3—C41.387 (3)C21—H21A0.9900
C3—H3A0.9500C21—H21B0.9900
C4—C51.393 (3)C22—H22A0.9900
C4—H4A0.9500C22—H22B0.9900
C5—C61.384 (3)C23—C241.497 (3)
C5—H5A0.9500C23—H23A0.9900
C6—H6A0.9500C23—H23B0.9900
C7—C121.412 (2)C24—H24A0.9900
C7—C81.415 (2)C24—H24B0.9900
C7—K1i3.4257 (15)
O3—K1—O481.76 (4)C6—C5—C4121.50 (17)
O3—K1—O177.02 (4)C6—C5—H5A119.3
O4—K1—O186.30 (4)C4—C5—H5A119.3
O3—K1—N1138.80 (4)C5—C6—C1121.69 (16)
O4—K1—N1136.28 (4)C5—C6—H6A119.2
O1—K1—N188.65 (4)C1—C6—H6A119.2
O3—K1—N1i97.79 (4)N1—C7—C12125.56 (15)
O4—K1—N1i110.13 (4)N1—C7—C8118.58 (14)
O1—K1—N1i162.11 (4)C12—C7—C8115.63 (15)
N1—K1—N1i84.17 (4)N1—C7—K1i56.53 (8)
O3—K1—C2172.89 (4)C12—C7—K1i97.44 (10)
O4—K1—C295.44 (4)C8—C7—K1i113.50 (10)
O1—K1—C2109.43 (4)C9—C8—C7121.84 (16)
N1—K1—C246.22 (4)C9—C8—H8A119.1
N1i—K1—C276.96 (4)C7—C8—H8A119.1
O3—K1—C1161.37 (4)C10—C9—C8121.11 (18)
O4—K1—C1112.45 (4)C10—C9—H9A119.4
O1—K1—C191.47 (4)C8—C9—H9A119.4
N1—K1—C124.31 (4)C9—C10—C11118.45 (17)
N1i—K1—C188.71 (4)C9—C10—H10A120.8
C2—K1—C125.11 (4)C11—C10—H10A120.8
O3—K1—C1i79.22 (4)C12—C11—C10121.14 (17)
O4—K1—C1i121.11 (4)C12—C11—H11A119.4
O1—K1—C1i140.27 (4)C10—C11—H11A119.4
N1—K1—C1i88.71 (4)C11—C12—C7121.84 (17)
N1i—K1—C1i23.62 (4)C11—C12—H12A119.1
C2—K1—C1i96.83 (4)C7—C12—H12A119.1
C1—K1—C1i101.77 (4)O1—C13—C14110.72 (16)
O3—K1—C2i78.16 (4)O1—C13—H13A109.5
O4—K1—C2i142.84 (4)C14—C13—H13A109.5
O1—K1—C2i118.58 (4)O1—C13—H13B109.5
N1—K1—C2i75.36 (4)C14—C13—H13B109.5
N1i—K1—C2i43.66 (4)H13A—C13—H13B108.1
C2—K1—C2i100.68 (4)O2—C14—C13110.90 (15)
C1—K1—C2i95.12 (4)O2—C14—H14A109.5
C1i—K1—C2i24.10 (4)C13—C14—H14A109.5
O3—K1—C7i95.50 (4)O2—C14—H14B109.5
O4—K1—C7i86.71 (4)C13—C14—H14B109.5
O1—K1—C7i170.42 (4)H14A—C14—H14B108.0
N1—K1—C7i100.93 (4)O2—C15—C16110.51 (16)
N1i—K1—C7i23.43 (4)O2—C15—H15A109.5
C2—K1—C7i77.77 (4)C16—C15—H15A109.5
C1—K1—C7i97.25 (4)O2—C15—H15B109.5
C1i—K1—C7i41.30 (4)C16—C15—H15B109.5
C2i—K1—C7i64.71 (4)H15A—C15—H15B108.1
O3—K1—K1i126.16 (3)O1—C16—C15110.88 (15)
O4—K1—K1i135.53 (3)O1—C16—H16A109.5
O1—K1—K1i129.65 (3)C15—C16—H16A109.5
N1—K1—K1i43.11 (3)O1—C16—H16B109.5
N1i—K1—K1i41.07 (3)C15—C16—H16B109.5
C2—K1—K1i52.27 (3)H16A—C16—H16B108.1
C1—K1—K1i51.88 (3)O3—C17—C18ii110.80 (15)
C1i—K1—K1i49.89 (3)O3—C17—H17A109.5
C2i—K1—K1i48.41 (3)C18ii—C17—H17A109.5
C7i—K1—K1i59.66 (3)O3—C17—H17B109.5
C16—O1—C13109.81 (13)C18ii—C17—H17B109.5
C16—O1—K1126.57 (9)H17A—C17—H17B108.1
C13—O1—K1123.22 (10)O3—C18—C17ii110.30 (15)
C14—O2—C15109.87 (13)O3—C18—H18A109.6
C17—O3—C18109.81 (13)C17ii—C18—H18A109.6
C17—O3—K1124.11 (10)O3—C18—H18B109.6
C18—O3—K1125.98 (10)C17ii—C18—H18B109.6
C20—O4—C19109.49 (13)H18A—C18—H18B108.1
C20—O4—K1118.01 (10)O4—C19—C20iii111.02 (14)
C19—O4—K1131.87 (10)O4—C19—H19A109.4
C21—O5—C24109.73 (13)C20iii—C19—H19A109.4
C23—O6—C22109.40 (15)O4—C19—H19B109.4
C1—N1—C7121.35 (13)C20iii—C19—H19B109.4
C1—N1—K199.13 (9)H19A—C19—H19B108.0
C7—N1—K1133.05 (10)O4—C20—C19iii110.36 (15)
C1—N1—K1i98.73 (9)O4—C20—H20A109.6
C7—N1—K1i100.04 (9)C19iii—C20—H20A109.6
K1—N1—K1i95.83 (4)O4—C20—H20B109.6
N1—C1—C6126.92 (15)C19iii—C20—H20B109.6
N1—C1—C2117.45 (14)H20A—C20—H20B108.1
C6—C1—C2115.41 (16)O5—C21—C22111.12 (16)
N1—C1—K156.56 (7)O5—C21—H21A109.4
C6—C1—K1139.36 (11)C22—C21—H21A109.4
C2—C1—K174.07 (9)O5—C21—H21B109.4
N1—C1—K1i57.66 (8)C22—C21—H21B109.4
C6—C1—K1i141.23 (11)H21A—C21—H21B108.0
C2—C1—K1i78.15 (9)O6—C22—C21111.51 (17)
K1—C1—K1i78.23 (4)O6—C22—H22A109.3
C3—C2—C1122.31 (16)C21—C22—H22A109.3
C3—C2—K1134.02 (11)O6—C22—H22B109.3
C1—C2—K180.82 (10)C21—C22—H22B109.3
C3—C2—K1i139.91 (11)H22A—C22—H22B108.0
C1—C2—K1i77.74 (10)O6—C23—C24110.94 (15)
K1—C2—K1i79.32 (4)O6—C23—H23A109.5
C3—C2—H2A118.8C24—C23—H23A109.5
C1—C2—H2A118.8O6—C23—H23B109.5
K1—C2—H2A56.3C24—C23—H23B109.5
K1i—C2—H2A55.1H23A—C23—H23B108.0
C2—C3—C4120.98 (17)O5—C24—C23110.51 (16)
C2—C3—H3A119.5O5—C24—H24A109.5
C4—C3—H3A119.5C23—C24—H24A109.5
C3—C4—C5118.11 (18)O5—C24—H24B109.5
C3—C4—H4A120.9C23—C24—H24B109.5
C5—C4—H4A120.9H24A—C24—H24B108.1
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[K(C12H10N)(C4H8O2)2]·C4H8O2
Mr471.62
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)10.5417 (5), 10.6758 (6), 12.7711 (5)
α, β, γ (°)70.419 (3), 86.123 (3), 66.278 (2)
V3)1235.97 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.06 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.967, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8425, 5472, 3974
Rint0.029
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.01
No. of reflections5472
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Siemens, 1990), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds