Download citation
Download citation
link to html
In the title complex, [Mn(NCS)2(C10H9N3O)2(H2O)2], the MnII ion lies on a twofold rotation axis and assumes a distorted octa­hedral MnN4O2 coordination geometry. There is a weak π–π stacking inter­action between adjacent pyridyl and pyrazine rings [centroid-to-centroid distance 3.7457 (13) Å]. The mononuclear complexes are connected to each other by O—H...N and O—H...S hydrogen bonds. The dihedral angle between the pyridyl and pyrazine rings is 85.82 (9)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037166/bt2445sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037166/bt2445Isup2.hkl
Contains datablock I

CCDC reference: 660050

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.083
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for S1 - C1 .. 7.66 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C1 .. 5.29 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C22 H22 Mn N8 O4 S2
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.07
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Metal complexes containing N-heterocyclic ligands play a pivotal role in the area of coordination chemistry, but the ligand molecules that consist of pyridyl and pyrazyl groups are very limited (McMorran et al. 2002; Zhao et al., 2007a,b).

The title compound is shown in Fig. 1. In the mono-nuclear complex atom Mn1 is in a distorted octahedral geometry and is located on a twofold ratation axis. Between adjacent complexes there is a weak π-π stacking interaction between pyrazyl and pyridyl rings; the relevant distances are Cg1···Cg2i = 3.7457 (13) Å and Cg1···Cg2iperp = 3.222 Å [symmetry codes: (i) X, 1-Y, 1/2+Z; Cg1 and Cg2 are the centroids of the N2,N3,C2,C3,C4,C5 and N4,C7,C8,C9,C10,C11 rings, respectively; Cg1···Cg2perp is the perpendicular distance from ring Cg1 to ring Cg2]. Fig. 2 shows the O—H···N and O—H···S hydrogen bonds and Table 1 lists the geometric parameters. The dihedral angle between the pyridyl ring and the pyrazyl ring in 2-[(pyridin-2-yl)methoxy]pyrazine is 85.82 (9)°.

Related literature top

For related structures, see: McMorran et al. (2002); Zhao et al. (2007a,b).

Experimental top

5 ml me thanol solution of 2-[(pyridin-2-yl)methoxy]pyrazine (0.0468 g, 0.250 mmol) was added into 10 ml H2O solution containing Mn(ClO4)2.6H2O (0.1021 g, 0.282 mmol) and NaSCN (0.0459 g, 0.566 mmol), and the mixed soulution was stirred for a few minutes. Colourless single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

The H atoms from H2O were found in a difference Fourier map, and placed in idealized positions with O—H = 0.894–0.895 Å. The C-bound H atom were placed in calculated positions, C—H = 0.93–0.97 Å. All H atoms were refined as riding, with Uiso(H) = 1.2–1.5Ueq(C,O).

Structure description top

Metal complexes containing N-heterocyclic ligands play a pivotal role in the area of coordination chemistry, but the ligand molecules that consist of pyridyl and pyrazyl groups are very limited (McMorran et al. 2002; Zhao et al., 2007a,b).

The title compound is shown in Fig. 1. In the mono-nuclear complex atom Mn1 is in a distorted octahedral geometry and is located on a twofold ratation axis. Between adjacent complexes there is a weak π-π stacking interaction between pyrazyl and pyridyl rings; the relevant distances are Cg1···Cg2i = 3.7457 (13) Å and Cg1···Cg2iperp = 3.222 Å [symmetry codes: (i) X, 1-Y, 1/2+Z; Cg1 and Cg2 are the centroids of the N2,N3,C2,C3,C4,C5 and N4,C7,C8,C9,C10,C11 rings, respectively; Cg1···Cg2perp is the perpendicular distance from ring Cg1 to ring Cg2]. Fig. 2 shows the O—H···N and O—H···S hydrogen bonds and Table 1 lists the geometric parameters. The dihedral angle between the pyridyl ring and the pyrazyl ring in 2-[(pyridin-2-yl)methoxy]pyrazine is 85.82 (9)°.

For related structures, see: McMorran et al. (2002); Zhao et al. (2007a,b).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level [symmetry code: (i) -x + 2, y, -z + 5/2].
[Figure 2] Fig. 2. Hydrogen bonds (dashed lines) between complexes.
Diaquabis[2-(2-pyridylmethoxy)pyrazine-κN4]bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C10H9N3O)2(H2O)2]F(000) = 1196
Mr = 581.54Dx = 1.480 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4687 reflections
a = 20.060 (3) Åθ = 2.2–28.3°
b = 10.1381 (12) ŵ = 0.71 mm1
c = 13.7285 (17) ÅT = 298 K
β = 110.844 (2)°Block, colourless
V = 2609.3 (6) Å30.26 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2317 independent reflections
Radiation source: fine-focus sealed tube2133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.837, Tmax = 0.895k = 1211
5374 measured reflectionsl = 916
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.6969P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.010
2317 reflectionsΔρmax = 0.44 e Å3
169 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (4)
Crystal data top
[Mn(NCS)2(C10H9N3O)2(H2O)2]V = 2609.3 (6) Å3
Mr = 581.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.060 (3) ŵ = 0.71 mm1
b = 10.1381 (12) ÅT = 298 K
c = 13.7285 (17) Å0.26 × 0.18 × 0.16 mm
β = 110.844 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2133 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.895Rint = 0.022
5374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
2317 reflectionsΔρmin = 0.45 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.79418 (3)1.25000.03392 (15)
S11.03076 (5)0.77723 (7)0.91123 (5)0.0820 (2)
N20.92253 (7)0.61791 (14)1.18728 (11)0.0387 (3)
O10.80883 (7)0.47898 (12)0.94850 (9)0.0490 (3)
N40.67814 (8)0.44033 (15)0.74592 (11)0.0435 (4)
O20.91697 (7)0.94209 (13)1.17325 (9)0.0493 (3)
H10.88470.97821.19640.074*
H60.93311.01031.14680.074*
N11.02389 (9)0.79825 (16)1.10881 (13)0.0492 (4)
C50.84117 (9)0.49147 (17)1.05252 (13)0.0387 (4)
C80.76848 (10)0.28795 (18)0.74656 (16)0.0459 (4)
H80.80780.23710.78430.055*
N30.82651 (8)0.40955 (15)1.11682 (11)0.0429 (4)
C11.02672 (10)0.79049 (17)1.02685 (15)0.0423 (4)
C90.74294 (11)0.28611 (19)0.63920 (17)0.0515 (5)
H90.76430.23300.60340.062*
C70.73497 (9)0.36634 (16)0.79734 (13)0.0374 (4)
C30.86224 (10)0.43152 (19)1.21803 (14)0.0472 (4)
H30.85490.37481.26640.057*
C40.88960 (9)0.59529 (17)1.08683 (13)0.0385 (4)
H40.89880.64931.03830.046*
C60.76005 (10)0.36903 (18)0.91382 (14)0.0467 (4)
H6A0.71990.38010.93670.056*
H6B0.78400.28710.94240.056*
C20.90920 (10)0.53366 (19)1.25373 (14)0.0453 (4)
H20.93230.54501.32510.054*
C110.65489 (11)0.4379 (2)0.64193 (15)0.0511 (5)
H110.61560.48950.60540.061*
C100.68574 (11)0.3634 (2)0.58593 (15)0.0520 (5)
H100.66820.36550.51350.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0365 (2)0.0357 (2)0.0277 (2)0.0000.00914 (15)0.000
S10.1351 (6)0.0759 (5)0.0542 (4)0.0111 (4)0.0571 (4)0.0012 (3)
N20.0368 (7)0.0388 (8)0.0357 (7)0.0029 (6)0.0070 (6)0.0008 (6)
O10.0611 (8)0.0431 (7)0.0324 (6)0.0182 (6)0.0040 (6)0.0015 (5)
N40.0454 (8)0.0435 (8)0.0391 (8)0.0011 (6)0.0120 (7)0.0035 (6)
O20.0534 (7)0.0538 (8)0.0419 (7)0.0150 (6)0.0185 (6)0.0082 (6)
N10.0614 (10)0.0511 (10)0.0407 (9)0.0029 (7)0.0251 (8)0.0007 (7)
C50.0408 (9)0.0359 (9)0.0345 (9)0.0011 (7)0.0076 (7)0.0002 (7)
C80.0418 (10)0.0402 (10)0.0536 (11)0.0006 (7)0.0145 (8)0.0000 (8)
N30.0469 (8)0.0399 (8)0.0380 (8)0.0081 (6)0.0103 (6)0.0010 (6)
C10.0465 (10)0.0377 (10)0.0454 (11)0.0019 (7)0.0197 (8)0.0021 (7)
C90.0604 (12)0.0501 (11)0.0518 (11)0.0081 (9)0.0295 (10)0.0130 (9)
C70.0403 (9)0.0337 (9)0.0356 (9)0.0101 (7)0.0103 (7)0.0020 (7)
C30.0535 (10)0.0476 (10)0.0371 (9)0.0105 (8)0.0119 (8)0.0050 (8)
C40.0408 (9)0.0363 (9)0.0346 (9)0.0030 (7)0.0087 (7)0.0027 (7)
C60.0537 (10)0.0423 (10)0.0377 (9)0.0153 (8)0.0083 (8)0.0003 (8)
C20.0477 (10)0.0492 (11)0.0334 (9)0.0076 (8)0.0077 (8)0.0010 (8)
C110.0512 (10)0.0523 (11)0.0411 (10)0.0046 (9)0.0058 (8)0.0026 (8)
C100.0637 (12)0.0551 (12)0.0350 (9)0.0123 (10)0.0151 (9)0.0059 (8)
Geometric parameters (Å, º) top
Mn1—N1i2.1564 (16)C5—C41.396 (2)
Mn1—N12.1564 (16)C8—C91.378 (3)
Mn1—O2i2.2100 (13)C8—C71.380 (3)
Mn1—O22.2100 (12)C8—H80.9300
Mn1—N22.3233 (14)N3—C31.336 (2)
Mn1—N2i2.3233 (14)C9—C101.367 (3)
S1—C11.623 (2)C9—H90.9300
N2—C41.320 (2)C7—C61.496 (2)
N2—C21.344 (2)C3—C21.368 (3)
O1—C51.348 (2)C3—H30.9300
O1—C61.448 (2)C4—H40.9300
N4—C111.335 (2)C6—H6A0.9700
N4—C71.337 (2)C6—H6B0.9700
O2—H10.8947C2—H20.9300
O2—H60.8938C11—C101.372 (3)
N1—C11.149 (3)C11—H110.9300
C5—N31.319 (2)C10—H100.9300
N1i—Mn1—N1177.81 (9)C5—N3—C3115.22 (15)
N1i—Mn1—O2i85.95 (6)N1—C1—S1179.17 (17)
N1—Mn1—O2i92.56 (6)C10—C9—C8119.12 (18)
N1i—Mn1—O292.56 (6)C10—C9—H9120.4
N1—Mn1—O285.95 (6)C8—C9—H9120.4
O2i—Mn1—O294.55 (7)N4—C7—C8122.25 (16)
N1i—Mn1—N290.83 (6)N4—C7—C6116.96 (16)
N1—Mn1—N290.85 (6)C8—C7—C6120.77 (17)
O2i—Mn1—N2171.83 (5)N3—C3—C2123.03 (17)
O2—Mn1—N293.09 (5)N3—C3—H3118.5
N1i—Mn1—N2i90.85 (6)C2—C3—H3118.5
N1—Mn1—N2i90.83 (6)N2—C4—C5120.88 (16)
O2i—Mn1—N2i93.09 (5)N2—C4—H4119.6
O2—Mn1—N2i171.83 (5)C5—C4—H4119.6
N2—Mn1—N2i79.44 (7)O1—C6—C7107.25 (14)
C4—N2—C2116.88 (15)O1—C6—H6A110.3
C4—N2—Mn1122.75 (11)C7—C6—H6A110.3
C2—N2—Mn1120.37 (11)O1—C6—H6B110.3
C5—O1—C6115.79 (13)C7—C6—H6B110.3
C11—N4—C7117.52 (16)H6A—C6—H6B108.5
Mn1—O2—H1128.8N2—C2—C3121.05 (16)
Mn1—O2—H6113.5N2—C2—H2119.5
H1—O2—H6103.9C3—C2—H2119.5
C1—N1—Mn1169.40 (16)N4—C11—C10123.61 (18)
N3—C5—O1120.80 (15)N4—C11—H11118.2
N3—C5—C4122.89 (15)C10—C11—H11118.2
O1—C5—C4116.31 (15)C9—C10—C11118.41 (18)
C9—C8—C7119.06 (17)C9—C10—H10120.8
C9—C8—H8120.5C11—C10—H10120.8
C7—C8—H8120.5
N1i—Mn1—N2—C4152.48 (14)C11—N4—C7—C6179.46 (16)
N1—Mn1—N2—C426.12 (14)C9—C8—C7—N40.4 (3)
O2—Mn1—N2—C459.87 (14)C9—C8—C7—C6178.70 (16)
N2i—Mn1—N2—C4116.80 (15)C5—N3—C3—C21.9 (3)
N1i—Mn1—N2—C227.27 (14)C2—N2—C4—C52.5 (2)
N1—Mn1—N2—C2154.13 (14)Mn1—N2—C4—C5177.28 (12)
O2—Mn1—N2—C2119.88 (13)N3—C5—C4—N21.3 (3)
N2i—Mn1—N2—C263.44 (12)O1—C5—C4—N2178.14 (15)
O2i—Mn1—N1—C1165.5 (8)C5—O1—C6—C7175.36 (15)
O2—Mn1—N1—C171.1 (8)N4—C7—C6—O187.09 (19)
N2—Mn1—N1—C122.0 (8)C8—C7—C6—O194.48 (19)
N2i—Mn1—N1—C1101.4 (8)C4—N2—C2—C31.6 (3)
C6—O1—C5—N32.0 (2)Mn1—N2—C2—C3178.21 (14)
C6—O1—C5—C4178.54 (15)N3—C3—C2—N20.7 (3)
O1—C5—N3—C3179.65 (16)C7—N4—C11—C100.5 (3)
C4—C5—N3—C31.0 (3)C8—C9—C10—C111.5 (3)
C7—C8—C9—C100.9 (3)N4—C11—C10—C90.8 (3)
C11—N4—C7—C81.1 (3)
Symmetry code: (i) x+2, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H6···S1ii0.892.493.3776 (16)171
O2—H1···N4iii0.891.902.793 (2)176
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+3/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C10H9N3O)2(H2O)2]
Mr581.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.060 (3), 10.1381 (12), 13.7285 (17)
β (°) 110.844 (2)
V3)2609.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.26 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.837, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
5374, 2317, 2133
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.04
No. of reflections2317
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXTL (Bruker, 2001), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H6···S1i0.892.493.3776 (16)170.9
O2—H1···N4ii0.891.902.793 (2)175.7
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+3/2, y+3/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds