Download citation
Download citation
link to html
The cell parameters of the title compound, C6H4Cl3N, have already been determined [Schlemper & Konnert (1967). Acta Cryst. 22, 918; Andrianov et al. (1971). Zh. Strukt. Khim. 12, 736–737], but no coordinates were available. There are two mol­ecules in the asymmetric unit. The mol­ecules are linked through N—H...N and N—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030929/bt2410sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030929/bt2410Isup2.hkl
Contains datablock I

CCDC reference: 655064

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.052
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H2B .. CL6 .. 2.85 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C6 H4 Cl3 N PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C6 H4 Cl3 N
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.37 From the CIF: _reflns_number_total 2640 Count of symmetry unique reflns 1737 Completeness (_total/calc) 151.99% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 903 Fraction of Friedel pairs measured 0.520 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the present work, the structure of trichloroaniline has been determined at 100 K, as part of our study of the effect of ring and side chain substitutions on the solid state structures of chemically and biologically important compounds (Gowda et al., 2000; Gowda et al., 2004; Gowda et al., 2006; Gowda, Foro, Fuess, 2007; Gowda, Paulus, Svoboda & Fuess, 2007). The cell pararameters of the title compound have already been determined (Schlemper & Konnert, 1967; Andrianov et al., 1971). There are two molecules in the asymmetric unit. The molecules are linked through N—H···N and N—H···Cl hydrogen bonds (Table 1 & Fig. 2).

Related literature top

For related literature, see: Andrianov et al. (1971); Gowda et al. (2000, 2004, 2006); Gowda, Foro & Fuess (2007); Gowda, Paulus, Svoboda & Fuess (2007); Schlemper & Konnert (1967).

Experimental top

Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution of the analytical grade commercial sample.

Refinement top

The H atoms were located in difference map and their positions refined, with Uiso(H) = 1.2 Ueq (parent atom).

Structure description top

In the present work, the structure of trichloroaniline has been determined at 100 K, as part of our study of the effect of ring and side chain substitutions on the solid state structures of chemically and biologically important compounds (Gowda et al., 2000; Gowda et al., 2004; Gowda et al., 2006; Gowda, Foro, Fuess, 2007; Gowda, Paulus, Svoboda & Fuess, 2007). The cell pararameters of the title compound have already been determined (Schlemper & Konnert, 1967; Andrianov et al., 1971). There are two molecules in the asymmetric unit. The molecules are linked through N—H···N and N—H···Cl hydrogen bonds (Table 1 & Fig. 2).

For related literature, see: Andrianov et al. (1971); Gowda et al. (2000, 2004, 2006); Gowda, Foro & Fuess (2007); Gowda, Paulus, Svoboda & Fuess (2007); Schlemper & Konnert (1967).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the hydrogen bonds as dashed lines.
2,4,6-Trichloroaniline top
Crystal data top
C6H4Cl3NF(000) = 392
Mr = 196.45Dx = 1.778 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2998 reflections
a = 13.1933 (9) Åθ = 2.8–26.5°
b = 3.7913 (3) ŵ = 1.16 mm1
c = 15.774 (1) ÅT = 100 K
β = 111.546 (8)°Needle, colourless
V = 733.88 (9) Å30.40 × 0.06 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
2640 independent reflections
Radiation source: Enhance (Mo) X-ray Source2394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.4012 pixels mm-1θmax = 26.4°, θmin = 2.5°
Rotation method data acquisition using ω and φ scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 34
Tmin = 0.654, Tmax = 0.955l = 1919
6014 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Only H-atom coordinates refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.0195P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2640 reflectionsΔρmax = 0.31 e Å3
205 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 909 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C6H4Cl3NV = 733.88 (9) Å3
Mr = 196.45Z = 4
Monoclinic, P21Mo Kα radiation
a = 13.1933 (9) ŵ = 1.16 mm1
b = 3.7913 (3) ÅT = 100 K
c = 15.774 (1) Å0.40 × 0.06 × 0.04 mm
β = 111.546 (8)°
Data collection top
Oxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
2640 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2394 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.955Rint = 0.020
6014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022Only H-atom coordinates refined
wR(F2) = 0.052Δρmax = 0.31 e Å3
S = 1.06Δρmin = 0.20 e Å3
2640 reflectionsAbsolute structure: Flack (1983), 909 Friedel pairs
205 parametersAbsolute structure parameter: 0.05 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17763 (17)0.1364 (8)0.48017 (15)0.0136 (5)
C20.15064 (17)0.1814 (7)0.38618 (15)0.0136 (5)
C30.21934 (19)0.0893 (7)0.34146 (16)0.0161 (5)
H30.1964 (19)0.127 (8)0.2782 (16)0.019*
C40.32004 (18)0.0566 (7)0.39203 (16)0.0145 (5)
C50.35067 (17)0.1116 (8)0.48459 (15)0.0139 (5)
H50.4162 (19)0.201 (7)0.5161 (16)0.017*
C60.27979 (18)0.0155 (7)0.52667 (14)0.0145 (5)
C70.18568 (16)0.1233 (8)0.04221 (14)0.0123 (5)
C80.26254 (17)0.2849 (7)0.07128 (14)0.0137 (5)
C90.36317 (17)0.4004 (8)0.01229 (14)0.0130 (5)
H90.4118 (18)0.505 (7)0.0361 (15)0.016*
C100.38899 (16)0.3535 (7)0.08034 (14)0.0129 (5)
C110.31648 (17)0.1988 (7)0.11387 (15)0.0124 (5)
H110.3328 (18)0.175 (7)0.1782 (16)0.015*
C120.21624 (17)0.0889 (7)0.05230 (15)0.0127 (5)
N10.10582 (16)0.2177 (6)0.52298 (15)0.0183 (5)
H1A0.058 (2)0.357 (9)0.4968 (17)0.022*
H1B0.138 (2)0.262 (7)0.5786 (17)0.022*
N20.08434 (16)0.0177 (6)0.10248 (14)0.0167 (5)
H2A0.077 (2)0.014 (8)0.1578 (18)0.020*
H2B0.0519 (19)0.132 (8)0.0836 (16)0.020*
Cl10.02316 (4)0.36022 (18)0.32306 (4)0.01969 (14)
Cl20.40873 (4)0.17199 (18)0.33787 (4)0.01946 (15)
Cl30.31863 (5)0.09196 (19)0.64317 (4)0.02145 (16)
Cl40.22936 (4)0.34462 (19)0.18807 (3)0.01808 (15)
Cl50.51505 (4)0.49705 (17)0.15626 (4)0.01731 (15)
Cl60.12272 (4)0.09515 (17)0.09410 (4)0.01712 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0135 (10)0.0103 (14)0.0163 (11)0.0037 (11)0.0047 (9)0.0008 (10)
C20.0108 (10)0.0084 (14)0.0167 (11)0.0006 (11)0.0007 (9)0.0011 (10)
C30.0191 (11)0.0136 (15)0.0128 (11)0.0024 (11)0.0027 (9)0.0003 (11)
C40.0155 (11)0.0084 (15)0.0228 (12)0.0008 (11)0.0105 (10)0.0019 (10)
C50.0109 (10)0.0118 (15)0.0165 (11)0.0002 (12)0.0020 (9)0.0004 (11)
C60.0173 (11)0.0131 (15)0.0100 (10)0.0032 (11)0.0014 (9)0.0015 (10)
C70.0127 (10)0.0080 (13)0.0165 (11)0.0026 (11)0.0059 (9)0.0025 (10)
C80.0162 (11)0.0142 (15)0.0117 (10)0.0056 (11)0.0061 (9)0.0018 (10)
C90.0132 (10)0.0106 (14)0.0178 (11)0.0026 (11)0.0087 (9)0.0017 (10)
C100.0091 (10)0.0115 (14)0.0162 (11)0.0002 (11)0.0024 (9)0.0027 (11)
C110.0144 (11)0.0091 (15)0.0132 (11)0.0030 (10)0.0047 (9)0.0001 (10)
C120.0135 (10)0.0093 (15)0.0194 (11)0.0017 (11)0.0109 (9)0.0009 (10)
N10.0165 (10)0.0214 (15)0.0166 (10)0.0027 (10)0.0056 (9)0.0021 (10)
N20.0134 (10)0.0205 (14)0.0165 (10)0.0031 (10)0.0060 (8)0.0023 (10)
Cl10.0148 (3)0.0204 (4)0.0189 (3)0.0034 (3)0.0004 (2)0.0003 (3)
Cl20.0201 (3)0.0214 (4)0.0196 (3)0.0022 (3)0.0105 (2)0.0010 (3)
Cl30.0260 (3)0.0255 (4)0.0116 (3)0.0037 (3)0.0056 (2)0.0032 (3)
Cl40.0162 (3)0.0254 (4)0.0120 (3)0.0030 (3)0.0044 (2)0.0027 (3)
Cl50.0130 (3)0.0201 (4)0.0163 (3)0.0027 (3)0.0025 (2)0.0003 (2)
Cl60.0166 (3)0.0168 (4)0.0220 (3)0.0013 (3)0.0119 (2)0.0020 (3)
Geometric parameters (Å, º) top
C1—N11.385 (3)C7—C121.400 (3)
C1—C61.400 (3)C8—C91.383 (3)
C1—C21.402 (3)C8—Cl41.745 (2)
C2—C31.382 (3)C9—C101.385 (3)
C2—Cl11.746 (2)C9—H90.94 (2)
C3—C41.389 (3)C10—C111.382 (3)
C3—H30.94 (2)C10—Cl51.742 (2)
C4—C51.380 (3)C11—C121.386 (3)
C4—Cl21.739 (2)C11—H110.96 (2)
C5—C61.380 (3)C12—Cl61.744 (2)
C5—H50.89 (2)N1—H1A0.81 (3)
C6—Cl31.741 (2)N1—H1B0.84 (2)
C7—N21.385 (3)N2—H2A0.85 (3)
C7—C81.398 (3)N2—H2B0.83 (3)
N1—C1—C6122.4 (2)C9—C8—C7123.41 (19)
N1—C1—C2122.3 (2)C9—C8—Cl4118.41 (17)
C6—C1—C2115.2 (2)C7—C8—Cl4118.17 (16)
C3—C2—C1123.3 (2)C8—C9—C10118.2 (2)
C3—C2—Cl1118.81 (17)C8—C9—H9119.4 (14)
C1—C2—Cl1117.87 (18)C10—C9—H9122.4 (14)
C2—C3—C4118.4 (2)C11—C10—C9121.4 (2)
C2—C3—H3119.1 (15)C11—C10—Cl5119.34 (16)
C4—C3—H3122.4 (15)C9—C10—Cl5119.23 (17)
C5—C4—C3121.0 (2)C10—C11—C12118.41 (19)
C5—C4—Cl2119.55 (18)C10—C11—H11121.7 (14)
C3—C4—Cl2119.49 (17)C12—C11—H11119.8 (14)
C6—C5—C4118.8 (2)C11—C12—C7123.1 (2)
C6—C5—H5121.5 (15)C11—C12—Cl6118.73 (17)
C4—C5—H5119.6 (15)C7—C12—Cl6118.21 (16)
C5—C6—C1123.3 (2)C1—N1—H1A116.0 (18)
C5—C6—Cl3118.36 (17)C1—N1—H1B112.1 (17)
C1—C6—Cl3118.35 (17)H1A—N1—H1B114 (3)
N2—C7—C8122.3 (2)C7—N2—H2A117.7 (17)
N2—C7—C12122.1 (2)C7—N2—H2B116.6 (17)
C8—C7—C12115.46 (19)H2A—N2—H2B113 (3)
N1—C1—C2—C3177.4 (3)N2—C7—C8—C9178.4 (3)
C6—C1—C2—C30.9 (4)C12—C7—C8—C91.0 (4)
N1—C1—C2—Cl12.1 (4)N2—C7—C8—Cl41.5 (4)
C6—C1—C2—Cl1178.57 (19)C12—C7—C8—Cl4178.84 (19)
C1—C2—C3—C40.3 (4)C7—C8—C9—C100.0 (4)
Cl1—C2—C3—C4179.3 (2)Cl4—C8—C9—C10179.8 (2)
C2—C3—C4—C50.6 (4)C8—C9—C10—C110.6 (4)
C2—C3—C4—Cl2179.5 (2)C8—C9—C10—Cl5179.9 (2)
C3—C4—C5—C60.7 (4)C9—C10—C11—C120.2 (4)
Cl2—C4—C5—C6179.4 (2)Cl5—C10—C11—C12179.51 (19)
C4—C5—C6—C10.1 (4)C10—C11—C12—C70.8 (4)
C4—C5—C6—Cl3179.1 (2)C10—C11—C12—Cl6178.2 (2)
N1—C1—C6—C5177.3 (3)N2—C7—C12—C11178.8 (2)
C2—C1—C6—C50.8 (4)C8—C7—C12—C111.4 (4)
N1—C1—C6—Cl31.9 (4)N2—C7—C12—Cl60.3 (4)
C2—C1—C6—Cl3178.4 (2)C8—C7—C12—Cl6177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.81 (3)2.48 (3)3.229 (3)155 (2)
N1—H1A···Cl10.81 (3)2.61 (3)2.983 (2)110 (2)
N1—H1B···Cl30.84 (3)2.60 (3)2.991 (2)110 (2)
N2—H2A···Cl10.85 (3)2.78 (3)3.542 (2)150 (2)
N2—H2B···Cl6ii0.83 (3)2.85 (3)3.626 (2)156 (2)
Symmetry codes: (i) x, y+1/2, z1; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H4Cl3N
Mr196.45
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)13.1933 (9), 3.7913 (3), 15.774 (1)
β (°) 111.546 (8)
V3)733.88 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.40 × 0.06 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.654, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
6014, 2640, 2394
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.06
No. of reflections2640
No. of parameters205
No. of restraints1
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.31, 0.20
Absolute structureFlack (1983), 909 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.81 (3)2.48 (3)3.229 (3)155 (2)
N1—H1A···Cl10.81 (3)2.61 (3)2.983 (2)110 (2)
N1—H1B···Cl30.84 (3)2.60 (3)2.991 (2)110 (2)
N2—H2A···Cl10.85 (3)2.78 (3)3.542 (2)150 (2)
N2—H2B···Cl6ii0.83 (3)2.85 (3)3.626 (2)156 (2)
Symmetry codes: (i) x, y+1/2, z1; (ii) x, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds