Download citation
Download citation
link to html
The crystal structures of three polymorphs found for the addition complex of urea and barbituric acid are described and compared. Two polymorphs are monoclinic, space groups P21/c and Cc, whereas the third is triclinic, P\bar 1. The displacement of electron density towards the mesomeric forms, corresponding to the tautomeric forms of higher stability, of the barbituric acid molecule seem to influence the type of hydrogen bonds formed, which in turn determines the different packing topology in the polymorphs. While the polymorphic forms can be easily differentiated at the first-level graph-set analysis of their hydrogen-bonding patterns, a higher-level analysis enables important features of the mutual spatial arrangement of the structural components to be revealed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108026645/bs5065sup1.cif
Contains datablocks global, I, II, III

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108026645/bs5065Isup2.fcf
Contains datablock I

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108026645/bs5065IIsup3.fcf
Contains datablock II

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108026645/bs5065IIIsup4.fcf
Contains datablock III

CCDC references: 705613; 705614; 705615

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); ORTEP-3 for Windows (Farrugia, 1997); Mercury (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(I) 2,4,6(1H,3H,5H)-Pyrimidinetrione urea addition compound top
Crystal data top
C5H8N4O4F(000) = 392
Mr = 188.15Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1657 reflections
a = 7.8857 (3) Åθ = 1.0–27.5°
b = 6.9620 (2) ŵ = 0.14 mm1
c = 14.4283 (6) ÅT = 293 K
β = 98.027 (1)°Plate, yellowish
V = 784.36 (5) Å30.30 × 0.22 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
1775 independent reflections
Radiation source: fine-focus sealed tube1334 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scans at χ = 55 °h = 1010
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 98
Tmin = 0.960, Tmax = 0.993l = 1818
3177 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1825P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.21 e Å3
1775 reflectionsΔρmin = 0.19 e Å3
118 parameters
Crystal data top
C5H8N4O4V = 784.36 (5) Å3
Mr = 188.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8857 (3) ŵ = 0.14 mm1
b = 6.9620 (2) ÅT = 293 K
c = 14.4283 (6) Å0.30 × 0.22 × 0.05 mm
β = 98.027 (1)°
Data collection top
KappaCCD
diffractometer
1775 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1334 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.993Rint = 0.025
3177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1775 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29444 (13)0.08443 (15)0.04154 (8)0.0405 (3)
C10.33939 (19)0.2365 (2)0.00107 (11)0.0312 (4)
N20.49808 (17)0.2593 (2)0.04500 (11)0.0453 (4)
H2A0.57180.16840.04440.054*
H2B0.52690.36480.07400.054*
N40.22878 (18)0.3807 (2)0.00349 (12)0.0490 (4)
H4A0.12550.36950.02440.059*
H4B0.26070.48480.03290.059*
N10.02901 (15)0.02606 (18)0.12628 (9)0.0316 (3)
H10.06510.00850.08930.038*
C20.15042 (18)0.1145 (2)0.12890 (11)0.0320 (4)
O20.12314 (14)0.26446 (16)0.08623 (9)0.0477 (4)
N30.30640 (15)0.07976 (18)0.18238 (9)0.0333 (3)
H30.38700.16130.17850.040*
C40.34359 (18)0.0726 (2)0.24078 (11)0.0319 (4)
O40.47961 (14)0.08108 (17)0.29313 (9)0.0448 (3)
C50.2109 (2)0.2251 (2)0.23773 (12)0.0384 (4)
H5A0.18780.24630.30120.046*
H5B0.25980.34300.21720.046*
C60.04407 (19)0.1936 (2)0.17773 (11)0.0333 (4)
O60.07375 (16)0.30556 (19)0.17366 (9)0.0511 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (6)0.0330 (6)0.0530 (7)0.0027 (5)0.0054 (5)0.0115 (5)
C10.0313 (8)0.0284 (8)0.0334 (8)0.0004 (6)0.0025 (6)0.0012 (7)
N20.0358 (8)0.0341 (8)0.0614 (10)0.0005 (6)0.0098 (7)0.0123 (7)
N40.0377 (8)0.0345 (8)0.0721 (11)0.0043 (6)0.0014 (7)0.0159 (7)
N10.0251 (6)0.0319 (7)0.0355 (7)0.0023 (5)0.0040 (5)0.0031 (6)
C20.0281 (8)0.0299 (8)0.0367 (8)0.0005 (6)0.0003 (6)0.0012 (7)
O20.0371 (7)0.0351 (7)0.0668 (9)0.0030 (5)0.0073 (6)0.0177 (6)
N30.0257 (6)0.0289 (7)0.0435 (7)0.0026 (5)0.0008 (5)0.0035 (6)
C40.0299 (8)0.0309 (8)0.0338 (8)0.0030 (6)0.0003 (6)0.0028 (7)
O40.0347 (6)0.0422 (7)0.0521 (7)0.0021 (5)0.0125 (5)0.0007 (6)
C50.0386 (9)0.0364 (9)0.0383 (9)0.0025 (7)0.0013 (7)0.0097 (7)
C60.0326 (8)0.0348 (8)0.0321 (8)0.0046 (6)0.0033 (6)0.0002 (7)
O60.0445 (7)0.0503 (8)0.0561 (8)0.0184 (6)0.0014 (6)0.0131 (6)
Geometric parameters (Å, º) top
O1—C11.251 (2)C2—O21.216 (2)
C1—N21.331 (2)C2—N31.379 (2)
C1—N41.333 (2)N3—C41.361 (2)
N2—H2A0.8600N3—H30.8600
N2—H2B0.8600C4—O41.224 (2)
N4—H4A0.8600C4—C51.487 (2)
N4—H4B0.8600C5—C61.487 (2)
N1—C21.366 (2)C5—H5A0.9700
N1—C61.378 (2)C5—H5B0.9700
N1—H10.8600C6—O61.208 (2)
O1—C1—N2121.2 (1)C4—N3—C2125.5 (1)
O1—C1—N4120.6 (1)C4—N3—H3117.2
N2—C1—N4118.2 (1)C2—N3—H3117.2
C1—N2—H2A120.0O4—C4—N3120.9 (1)
C1—N2—H2B120.0O4—C4—C5122.4 (1)
H2A—N2—H2B120.0N3—C4—C5116.6 (1)
C1—N4—H4A120.0C6—C5—C4118.3 (1)
C1—N4—H4B120.0C6—C5—H5A107.7
H4A—N4—H4B120.0C4—C5—H5A107.7
C2—N1—C6125.7 (1)C6—C5—H5B107.7
C2—N1—H1117.1C4—C5—H5B107.7
C6—N1—H1117.1H5A—C5—H5B107.1
O2—C2—N1121.8 (1)O6—C6—N1120.8 (1)
O2—C2—N3121.0 (1)O6—C6—C5123.0 (2)
N1—C2—N3117.2 (1)N1—C6—C5116.2 (1)
C6—N1—C2—O2174.8 (2)O4—C4—C5—C6174.8 (2)
C6—N1—C2—N35.1 (2)N3—C4—C5—C64.8 (2)
O2—C2—N3—C4172.2 (2)C2—N1—C6—O6176.7 (2)
N1—C2—N3—C47.7 (2)C2—N1—C6—C52.8 (2)
C2—N3—C4—O4172.0 (2)C4—C5—C6—O6176.9 (2)
C2—N3—C4—C57.6 (2)C4—C5—C6—N12.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.062.903 (2)168
N2—H2B···O4ii0.862.443.223 (2)151
N4—H4A···O2iii0.862.173.005 (2)165
N4—H4B···O2iv0.862.252.916 (2)135
N1—H1···O1iii0.861.952.779 (2)160
N3—H3···O4v0.862.092.895 (2)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2.
(II) 2,4,6(1H,3H,5H)-Pyrimidinetrione urea addition compound top
Crystal data top
C5H8N4O4F(000) = 392
Mr = 188.15Dx = 1.556 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1182 reflections
a = 15.9423 (7) Åθ = 1.0–30.0°
b = 5.0984 (3) ŵ = 0.14 mm1
c = 10.5534 (5) ÅT = 293 K
β = 110.570 (2)°Block, colourless
V = 803.09 (7) Å30.32 × 0.22 × 0.12 mm
Z = 4
Data collection top
KappaCCD
diffractometer
1169 independent reflections
Radiation source: fine-focus sealed tube1099 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.016
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 4.1°
ω scans at χ = 55 °h = 2120
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 47
Tmin = 0.958, Tmax = 0.984l = 1414
3691 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0491P)2 + 0.0769P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.083Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.17 e Å3
1169 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
118 parametersAbsolute structure parameter: 0.00 (3)
2 restraints
Crystal data top
C5H8N4O4V = 803.09 (7) Å3
Mr = 188.15Z = 4
Monoclinic, CcMo Kα radiation
a = 15.9423 (7) ŵ = 0.14 mm1
b = 5.0984 (3) ÅT = 293 K
c = 10.5534 (5) Å0.32 × 0.22 × 0.12 mm
β = 110.570 (2)°
Data collection top
KappaCCD
diffractometer
1169 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1099 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.984Rint = 0.016
3691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.17 e Å3
1169 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
118 parametersAbsolute structure parameter: 0.00 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76305 (8)0.5526 (3)0.56200 (11)0.0355 (3)
C10.68332 (11)0.4865 (4)0.49837 (16)0.0311 (3)
N20.64621 (11)0.2830 (4)0.53835 (17)0.0497 (4)
H2A0.67690.19450.60880.060*
H2B0.59160.24030.49370.060*
N40.63236 (12)0.6185 (4)0.38989 (18)0.0508 (5)
H4A0.65380.75220.36190.061*
H4B0.57800.57010.34770.061*
N10.84095 (10)0.0066 (3)0.49126 (14)0.0326 (3)
H10.81250.13360.51170.039*
C20.80045 (10)0.1134 (3)0.36886 (16)0.0314 (3)
O20.72846 (10)0.0353 (3)0.28983 (13)0.0462 (4)
N30.84309 (9)0.3242 (3)0.33813 (13)0.0329 (3)
H30.81660.40130.26200.039*
C40.92426 (10)0.4221 (3)0.41845 (16)0.0320 (3)
O40.95950 (10)0.6007 (3)0.37923 (15)0.0470 (4)
C50.96514 (11)0.3047 (3)0.55714 (16)0.0354 (3)
H5A1.02770.26830.57290.042*
H5B0.96320.43530.62290.042*
C60.92271 (10)0.0581 (3)0.58379 (15)0.0306 (3)
O60.95728 (9)0.0776 (3)0.68302 (14)0.0446 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (6)0.0431 (7)0.0289 (6)0.0064 (5)0.0028 (5)0.0013 (5)
C10.0285 (7)0.0362 (8)0.0260 (6)0.0022 (6)0.0063 (5)0.0055 (5)
N20.0359 (8)0.0574 (10)0.0457 (9)0.0149 (7)0.0016 (7)0.0097 (8)
N40.0362 (8)0.0540 (10)0.0451 (9)0.0113 (7)0.0072 (7)0.0129 (8)
N10.0286 (6)0.0329 (6)0.0314 (6)0.0052 (5)0.0043 (5)0.0017 (5)
C20.0277 (7)0.0365 (8)0.0273 (7)0.0035 (6)0.0065 (6)0.0024 (6)
O20.0369 (7)0.0572 (8)0.0335 (6)0.0138 (6)0.0013 (5)0.0014 (6)
N30.0323 (6)0.0401 (7)0.0233 (6)0.0030 (5)0.0061 (5)0.0019 (5)
C40.0299 (8)0.0337 (8)0.0312 (7)0.0024 (6)0.0095 (6)0.0020 (6)
O40.0440 (7)0.0506 (8)0.0424 (7)0.0146 (6)0.0101 (6)0.0082 (6)
C50.0305 (7)0.0385 (8)0.0318 (8)0.0067 (6)0.0041 (6)0.0001 (6)
C60.0264 (7)0.0321 (7)0.0289 (7)0.0005 (6)0.0045 (6)0.0012 (6)
O60.0385 (7)0.0435 (7)0.0390 (7)0.0041 (6)0.0022 (5)0.0097 (5)
Geometric parameters (Å, º) top
O1—C11.257 (2)C2—O21.224 (2)
C1—N41.330 (2)C2—N31.370 (2)
C1—N21.334 (2)N3—C41.368 (2)
N2—H2A0.8600N3—H30.8600
N2—H2B0.8600C4—O41.216 (2)
N4—H4A0.8600C4—C51.502 (2)
N4—H4B0.8600C5—C61.500 (2)
N1—C61.366 (2)C5—H5A0.9700
N1—C21.369 (2)C5—H5B0.9700
N1—H10.8600C6—O61.214 (2)
O1—C1—N4121.4 (2)C4—N3—C2125.4 (1)
O1—C1—N2121.1 (2)C4—N3—H3117.3
N4—C1—N2117.5 (2)C2—N3—H3117.3
C1—N2—H2A120.0O4—C4—N3120.8 (2)
C1—N2—H2B120.0O4—C4—C5122.4 (2)
H2A—N2—H2B120.0N3—C4—C5116.8 (1)
C1—N4—H4A120.0C6—C5—C4116.6 (1)
C1—N4—H4B120.0C6—C5—H5A108.2
H4A—N4—H4B120.0C4—C5—H5A108.2
C6—N1—C2125.6 (2)C6—C5—H5B108.2
C6—N1—H1117.2C4—C5—H5B108.2
C2—N1—H1117.2H5A—C5—H5B107.3
O2—C2—N1121.1 (2)O6—C6—N1120.6 (2)
O2—C2—N3121.2 (2)O6—C6—C5122.8 (1)
N1—C2—N3117.7 (1)N1—C6—C5116.6 (1)
C6—N1—C2—O2177.1 (2)O4—C4—C5—C6170.2 (2)
C6—N1—C2—N33.1 (2)N3—C4—C5—C611.9 (2)
O2—C2—N3—C4178.6 (2)C2—N1—C6—O6172.1 (2)
N1—C2—N3—C41.6 (2)C2—N1—C6—C59.2 (2)
C2—N3—C4—O4175.6 (2)C4—C5—C6—O6168.2 (2)
C2—N3—C4—C56.4 (2)C4—C5—C6—N113.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.142.992 (2)169
N2—H2B···O4ii0.862.153.005 (2)175
N4—H4A···O2iii0.862.173.019 (2)169
N4—H4B···O6iv0.862.092.884 (2)153
N1—H1···O1v0.861.942.793 (2)172
N3—H3···O1vi0.861.992.811 (2)158
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z1/2; (v) x, y1, z; (vi) x, y+1, z1/2.
(III) 2,4,6(1H,3H,5H)-Pyrimidinetrione urea addition compound top
Crystal data top
C5H8N4O4Z = 4
Mr = 188.15F(000) = 392
Triclinic, P1Dx = 1.586 Mg m3
a = 8.1588 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1117 (4) ÅCell parameters from 2050 reflections
c = 10.9268 (5) Åθ = 2.9–29.1°
α = 100.248 (2)°µ = 0.14 mm1
β = 91.515 (2)°T = 293 K
γ = 99.192 (2)°Block, colourless
V = 787.82 (6) Å30.35 × 0.13 × 0.13 mm
Data collection top
KappaCCD
diffractometer
3584 independent reflections
Radiation source: fine-focus sealed tube2380 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.017
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scans at χ = 55 °h = 910
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 911
Tmin = 0.953, Tmax = 0.982l = 1414
4828 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2967P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.22 e Å3
3584 reflectionsΔρmin = 0.19 e Å3
235 parameters
Crystal data top
C5H8N4O4γ = 99.192 (2)°
Mr = 188.15V = 787.82 (6) Å3
Triclinic, P1Z = 4
a = 8.1588 (4) ÅMo Kα radiation
b = 9.1117 (4) ŵ = 0.14 mm1
c = 10.9268 (5) ÅT = 293 K
α = 100.248 (2)°0.35 × 0.13 × 0.13 mm
β = 91.515 (2)°
Data collection top
KappaCCD
diffractometer
3584 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
2380 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.982Rint = 0.017
4828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3584 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.7813 (2)0.04121 (19)0.52443 (15)0.0420 (4)
H1A0.76090.02120.59710.050*
C2A0.6814 (3)0.0434 (2)0.42570 (18)0.0401 (5)
O2A0.5749 (2)0.14712 (17)0.44075 (13)0.0544 (4)
N3A0.7088 (2)0.0068 (2)0.31096 (16)0.0463 (5)
H3A0.64720.06080.24890.056*
C4A0.8263 (3)0.1087 (2)0.28616 (19)0.0426 (5)
O4A0.8402 (2)0.1331 (2)0.18121 (14)0.0632 (5)
C5A0.9343 (3)0.1979 (2)0.39424 (18)0.0411 (5)
H5A11.04900.19350.37480.049*
H5A20.91970.30260.40200.049*
C6A0.9096 (2)0.1537 (2)0.51749 (19)0.0389 (5)
O6A0.99946 (19)0.21308 (18)0.60997 (14)0.0548 (4)
N1B0.6821 (2)0.42592 (19)0.96006 (15)0.0403 (4)
H1B0.65490.41131.03300.048*
C2B0.5979 (2)0.3292 (2)0.86060 (18)0.0388 (5)
O2B0.4860 (2)0.22890 (18)0.87468 (14)0.0566 (5)
N3B0.6444 (2)0.34856 (19)0.74367 (15)0.0417 (4)
H3B0.59770.28210.68150.050*
C4B0.7586 (3)0.4646 (2)0.71804 (19)0.0397 (5)
O4B0.7809 (2)0.47970 (19)0.61115 (13)0.0569 (4)
C5B0.8523 (3)0.5679 (3)0.82745 (19)0.0456 (5)
H5B10.84060.67070.82120.055*
H5B20.96920.56080.82080.055*
C6B0.8053 (3)0.5434 (2)0.95412 (19)0.0401 (5)
O6B0.8734 (2)0.62294 (18)1.04861 (14)0.0573 (5)
O1A0.45510 (19)0.62811 (17)0.82492 (13)0.0490 (4)
C1A0.3897 (3)0.5897 (2)0.71742 (19)0.0396 (5)
N2A0.4423 (2)0.6616 (2)0.62667 (17)0.0569 (5)
H2A10.52320.73660.64160.068*
H2A20.39550.63330.55300.068*
N4A0.2615 (3)0.4753 (2)0.6897 (2)0.0637 (6)
H4A10.22310.42720.74660.076*
H4A20.21750.44990.61490.076*
O1B0.7245 (2)0.07543 (18)0.73102 (13)0.0587 (5)
C1B0.7595 (3)0.0159 (2)0.84199 (19)0.0427 (5)
N2B0.8721 (3)0.1093 (2)0.8735 (2)0.0619 (6)
H2B10.92210.15030.81660.074*
H2B20.89500.14910.95070.074*
N4B0.6877 (3)0.0768 (2)0.93195 (17)0.0666 (6)
H4B10.61580.15850.91410.080*
H4B20.71270.03481.00850.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0447 (10)0.0466 (10)0.0274 (9)0.0121 (8)0.0000 (7)0.0052 (8)
C2A0.0411 (12)0.0408 (11)0.0320 (11)0.0066 (9)0.0003 (9)0.0019 (9)
O2A0.0618 (10)0.0527 (9)0.0364 (8)0.0254 (8)0.0002 (7)0.0068 (7)
N3A0.0505 (11)0.0467 (10)0.0332 (9)0.0136 (8)0.0043 (8)0.0051 (8)
C4A0.0447 (12)0.0456 (12)0.0349 (11)0.0007 (9)0.0044 (9)0.0064 (10)
O4A0.0781 (12)0.0715 (12)0.0355 (9)0.0075 (9)0.0052 (8)0.0154 (8)
C5A0.0381 (11)0.0419 (11)0.0395 (12)0.0064 (9)0.0017 (9)0.0096 (9)
C6A0.0347 (11)0.0393 (11)0.0377 (11)0.0011 (9)0.0021 (8)0.0001 (9)
O6A0.0488 (9)0.0623 (10)0.0417 (9)0.0160 (8)0.0071 (7)0.0023 (8)
N1B0.0447 (10)0.0444 (10)0.0265 (8)0.0073 (8)0.0003 (7)0.0055 (7)
C2B0.0415 (12)0.0403 (11)0.0298 (10)0.0047 (9)0.0012 (8)0.0043 (9)
O2B0.0601 (10)0.0607 (10)0.0361 (8)0.0262 (8)0.0018 (7)0.0072 (7)
N3B0.0474 (10)0.0423 (10)0.0274 (9)0.0091 (8)0.0004 (7)0.0007 (7)
C4B0.0383 (11)0.0450 (12)0.0348 (11)0.0034 (9)0.0020 (8)0.0083 (9)
O4B0.0663 (11)0.0689 (11)0.0325 (8)0.0049 (8)0.0046 (7)0.0153 (8)
C5B0.0418 (12)0.0503 (13)0.0397 (12)0.0094 (10)0.0000 (9)0.0107 (10)
C6B0.0386 (11)0.0401 (11)0.0371 (11)0.0029 (9)0.0030 (8)0.0045 (9)
O6B0.0634 (11)0.0571 (10)0.0382 (9)0.0184 (8)0.0084 (7)0.0004 (8)
O1A0.0538 (9)0.0550 (9)0.0318 (8)0.0109 (7)0.0038 (6)0.0094 (7)
C1A0.0391 (11)0.0394 (11)0.0372 (11)0.0004 (9)0.0005 (9)0.0043 (9)
N2A0.0634 (13)0.0694 (13)0.0329 (10)0.0085 (10)0.0018 (9)0.0139 (9)
N4A0.0601 (13)0.0554 (12)0.0632 (14)0.0172 (10)0.0134 (10)0.0041 (11)
O1B0.0738 (11)0.0588 (10)0.0310 (8)0.0221 (8)0.0024 (7)0.0042 (7)
C1B0.0490 (13)0.0416 (12)0.0336 (11)0.0022 (9)0.0001 (9)0.0054 (9)
N2B0.0639 (13)0.0503 (12)0.0592 (13)0.0143 (10)0.0100 (10)0.0005 (10)
N4B0.0990 (18)0.0606 (13)0.0318 (11)0.0134 (12)0.0078 (10)0.0092 (10)
Geometric parameters (Å, º) top
N1A—C6A1.357 (2)C4B—O4B1.215 (2)
N1A—C2A1.371 (2)C4B—C5B1.491 (3)
N1A—H1A0.8600C5B—C6B1.491 (3)
C2A—O2A1.215 (2)C5B—H5B10.9700
C2A—N3A1.368 (3)C5B—H5B20.9700
N3A—C4A1.376 (3)C6B—O6B1.214 (2)
N3A—H3A0.8600O1A—C1A1.244 (2)
C4A—O4A1.211 (2)C1A—N2A1.327 (3)
C4A—C5A1.485 (3)C1A—N4A1.340 (3)
C5A—C6A1.482 (3)N2A—H2A10.8600
C5A—H5A10.9700N2A—H2A20.8600
C5A—H5A20.9700N4A—H4A10.8600
C6A—O6A1.221 (2)N4A—H4A20.8600
N1B—C6B1.359 (2)O1B—C1B1.243 (2)
N1B—C2B1.362 (2)C1B—N4B1.319 (3)
N1B—H1B0.8600C1B—N2B1.331 (3)
C2B—O2B1.218 (2)N2B—H2B10.8600
C2B—N3B1.375 (2)N2B—H2B20.8600
N3B—C4B1.367 (3)N4B—H4B10.8600
N3B—H3B0.8600N4B—H4B20.8600
C6A—N1A—C2A125.7 (2)O4B—C4B—N3B120.7 (2)
C6A—N1A—H1A117.2O4B—C4B—C5B123.0 (2)
C2A—N1A—H1A117.2N3B—C4B—C5B116.3 (2)
O2A—C2A—N3A122.2 (2)C4B—C5B—C6B117.8 (2)
O2A—C2A—N1A120.7 (2)C4B—C5B—H5B1107.9
N3A—C2A—N1A117.2 (2)C6B—C5B—H5B1107.9
C2A—N3A—C4A125.8 (2)C4B—C5B—H5B2107.9
C2A—N3A—H3A117.1C6B—C5B—H5B2107.9
C4A—N3A—H3A117.1H5B1—C5B—H5B2107.2
O4A—C4A—N3A120.9 (2)O6B—C6B—N1B120.6 (2)
O4A—C4A—C5A122.9 (2)O6B—C6B—C5B122.5 (2)
N3A—C4A—C5A116.2 (2)N1B—C6B—C5B116.9 (2)
C6A—C5A—C4A118.0 (2)O1A—C1A—N2A121.4 (2)
C6A—C5A—H5A1107.8O1A—C1A—N4A121.0 (2)
C4A—C5A—H5A1107.8N2A—C1A—N4A117.6 (2)
C6A—C5A—H5A2107.8C1A—N2A—H2A1120.0
C4A—C5A—H5A2107.8C1A—N2A—H2A2120.0
H5A1—C5A—H5A2107.1H2A1—N2A—H2A2120.0
O6A—C6A—N1A120.1 (2)C1A—N4A—H4A1120.0
O6A—C6A—C5A122.9 (2)C1A—N4A—H4A2120.0
N1A—C6A—C5A117.0 (2)H4A1—N4A—H4A2120.0
C6B—N1B—C2B125.7 (2)O1B—C1B—N4B120.7 (2)
C6B—N1B—H1B117.2O1B—C1B—N2B121.2 (2)
C2B—N1B—H1B117.2N4B—C1B—N2B118.2 (2)
O2B—C2B—N1B121.2 (2)C1B—N2B—H2B1120.0
O2B—C2B—N3B121.2 (2)C1B—N2B—H2B2120.0
N1B—C2B—N3B117.6 (2)H2B1—N2B—H2B2120.0
C4B—N3B—C2B125.5 (2)C1B—N4B—H4B1120.0
C4B—N3B—H3B117.3C1B—N4B—H4B2120.0
C2B—N3B—H3B117.3H4B1—N4B—H4B2120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.861.852.682 (2)164
N3A—H3A···O2Bi0.862.002.842 (2)166
N1B—H1B···O1Aii0.861.872.718 (2)167
N3B—H3B···O2Ai0.862.012.842 (2)162
N2A—H2A1···O1Biii0.862.243.077 (2)165
N2A—H2A2···O4Biv0.862.253.088 (2)164
N4B—H4B1···O1Av0.862.213.055 (3)167
N4B—H4B2···O4Avi0.862.313.135 (3)160
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC5H8N4O4C5H8N4O4C5H8N4O4
Mr188.15188.15188.15
Crystal system, space groupMonoclinic, P21/cMonoclinic, CcTriclinic, P1
Temperature (K)293293293
a, b, c (Å)7.8857 (3), 6.9620 (2), 14.4283 (6)15.9423 (7), 5.0984 (3), 10.5534 (5)8.1588 (4), 9.1117 (4), 10.9268 (5)
α, β, γ (°)90, 98.027 (1), 9090, 110.570 (2), 90100.248 (2), 91.515 (2), 99.192 (2)
V3)784.36 (5)803.09 (7)787.82 (6)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.140.140.14
Crystal size (mm)0.30 × 0.22 × 0.050.32 × 0.22 × 0.120.35 × 0.13 × 0.13
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.960, 0.9930.958, 0.9840.953, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3177, 1775, 1334 3691, 1169, 1099 4828, 3584, 2380
Rint0.0250.0160.017
(sin θ/λ)max1)0.6490.7040.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.03 0.033, 0.083, 1.06 0.053, 0.137, 1.03
No. of reflections177511693584
No. of parameters118118235
No. of restraints020
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.190.15, 0.170.22, 0.19
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter?0.00 (3)?

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003); ORTEP-3 for Windows (Farrugia, 1997); Mercury (Version 1.4; Macrae et al., 2006).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds