Download citation
Download citation
link to html
This paper reports the synthesis, X-ray and NMR investigations of chiral and meso dinitriles of tartaric acid (tartarodinitriles) and their O,O′-diacetyl and O,O′-dibenzoyl derivatives. While in chiral tartaric acid its esters and NH amides the four-atom carbon chain is overwhelmingly trans, it is gauche in chiral tartarodinitriles. Conversely, meso-tartaric acid, its esters and amides display a tendency for the gauche conformation, but meso-tartarodinitriles usually have the trans conformation. The NMR studies of tartarodinitriles reveal the presence of a conformational equilibrium in solution with a preference for those conformers found in crystals. The gauche conformation of meso-tartarodinitriles seems to be stabilized by local dipolar interactions, intramolecular C—H...O hydrogen bonds and by a tendency for maximization of the gauche effect, the latter effect also operating in chiral tartarodinitriles. Stabilization of the trans conformers of tartarodinitriles in the crystals seems to originate from specific intermolecular interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108018272/bs5062sup1.cif
Contains datablocks 1a, 1b, 1c, 2b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018272/bs50621asup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018272/bs50621bsup3.hkl
Contains datablock 1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018272/bs50621csup4.hkl
Contains datablock 1c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018272/bs50622bsup5.hkl
Contains datablock 2b

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768108018272/bs5062sup6.pdf
Supplementary material

CCDC references: 699601; 699602; 699603; 699604

Computing details top

For all compounds, data collection: CrysAlis CCD v.1.171 (Oxford Diffraction,2007); cell refinement: CrysAlis PRO v.1.171 (Oxford Diffraction,2007); data reduction: CrysAlis PRO v.1.171 (Oxford Diffraction,2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Simens Analytical X-Ray Instruments (1989), Mercury (Bruno, et al. 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(1a) top
Crystal data top
C4H4N2O2Dx = 1.519 Mg m3
Mr = 112.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 478 reflections
a = 7.2155 (15) Åθ = 3.8–26.1°
b = 6.2725 (12) ŵ = 0.13 mm1
c = 10.828 (2) ÅT = 130 K
V = 490.04 (17) Å3Prismatic, colourless
Z = 40.50 × 0.35 × 0.20 mm
F(000) = 232
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
352 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.1°, θmin = 3.8°
ω scansh = 85
2811 measured reflectionsk = 77
478 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118Riding
S = 1.13 w = 1/[σ2(Fo2) + (0.0645P)2]
where P = (Fo2 + 2Fc2)/3
478 reflections(Δ/σ)max < 0.001
41 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1068 (3)0.1971 (3)0.39095 (19)0.0213 (5)
C20.0641 (3)0.0965 (3)0.51150 (17)0.0196 (6)
H2A0.00030.20180.56590.024*
N10.1434 (2)0.2728 (3)0.29811 (14)0.0269 (5)
O20.23079 (18)0.0297 (2)0.56832 (13)0.0220 (5)
H2O0.229 (3)0.085 (4)0.642 (2)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (11)0.0190 (11)0.0222 (11)0.0014 (8)0.0010 (9)0.0021 (9)
C20.0216 (11)0.0213 (11)0.0158 (10)0.0020 (8)0.0001 (8)0.0008 (8)
N10.0317 (10)0.0293 (10)0.0196 (10)0.0036 (8)0.0017 (8)0.0011 (8)
O20.0250 (8)0.0248 (8)0.0161 (8)0.0014 (6)0.0034 (6)0.0023 (6)
Geometric parameters (Å, º) top
C1—N11.143 (2)C2—C2i1.544 (4)
C1—C21.482 (3)C2—H2A1.0000
C2—O21.414 (2)O2—H2O0.87 (3)
N1—C1—C2178.6 (2)O2—C2—H2A109.5
O2—C2—C1109.40 (15)C1—C2—H2A109.5
O2—C2—C2i110.34 (19)C2i—C2—H2A109.5
C1—C2—C2i108.45 (19)C2—O2—H2O105.5 (16)
Symmetry code: (i) x, y, z+1.
(1b) top
Crystal data top
C8H8N2O4Dx = 1.361 Mg m3
Mr = 196.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1892 reflections
a = 12.4510 (4) Åθ = 2.8–26.1°
b = 8.5089 (3) ŵ = 0.11 mm1
c = 18.0764 (5) ÅT = 130 K
V = 1915.09 (11) Å3Cube, colourless
Z = 80.60 × 0.40 × 0.40 mm
F(000) = 816
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
1438 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.1°, θmin = 2.8°
ω scansh = 1415
7983 measured reflectionsk = 510
1892 independent reflectionsl = 1822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029Riding
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1378P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1892 reflectionsΔρmax = 0.15 e Å3
128 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.28613 (10)0.68999 (15)0.20264 (6)0.0303 (3)
C20.39887 (9)0.66610 (13)0.17984 (6)0.0235 (3)
H2A0.44250.63080.22320.028*
C30.44618 (9)0.81709 (14)0.14802 (6)0.0235 (3)
H3A0.45020.89920.18750.028*
C40.38312 (9)0.87712 (14)0.08435 (6)0.0254 (3)
N10.19831 (9)0.71034 (15)0.21825 (6)0.0446 (3)
O20.39879 (6)0.54666 (9)0.12411 (4)0.0241 (2)
O30.55178 (6)0.77781 (9)0.12351 (4)0.0260 (2)
N40.33504 (9)0.92360 (13)0.03556 (6)0.0393 (3)
C200.46945 (9)0.42452 (14)0.13412 (6)0.0238 (3)
O200.52640 (6)0.41396 (11)0.18723 (4)0.0300 (2)
C210.46398 (10)0.31504 (15)0.07021 (7)0.0333 (3)
H21A0.49740.36420.02690.040*0.70
H21B0.38870.29100.05920.040*0.70
H21C0.50220.21770.08240.040*0.70
H21D0.42270.22200.08480.040*0.30
H21E0.53660.28410.05520.040*0.30
H21F0.42920.36690.02810.040*0.30
C300.62837 (9)0.89243 (13)0.13243 (6)0.0240 (3)
O300.60689 (7)1.01851 (10)0.15784 (5)0.0328 (2)
C310.73445 (9)0.83722 (15)0.10555 (7)0.0312 (3)
H31A0.74930.73250.12570.037*0.70
H31B0.79050.91040.12170.037*0.70
H31C0.73360.83220.05140.037*0.70
H31D0.76500.91680.07250.037*0.30
H31E0.72600.73770.07890.037*0.30
H31F0.78280.81960.14750.037*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (7)0.0330 (7)0.0229 (6)0.0041 (6)0.0007 (5)0.0024 (5)
C20.0265 (6)0.0244 (6)0.0196 (5)0.0042 (5)0.0025 (4)0.0018 (5)
C30.0235 (6)0.0239 (6)0.0230 (6)0.0031 (5)0.0030 (4)0.0062 (5)
C40.0291 (7)0.0212 (6)0.0259 (6)0.0007 (5)0.0014 (5)0.0028 (5)
N10.0356 (7)0.0605 (9)0.0377 (6)0.0093 (6)0.0050 (5)0.0041 (6)
O20.0278 (4)0.0217 (4)0.0227 (4)0.0019 (3)0.0038 (3)0.0020 (3)
O30.0225 (4)0.0235 (5)0.0321 (4)0.0017 (3)0.0010 (3)0.0069 (4)
N40.0466 (7)0.0379 (7)0.0333 (6)0.0075 (5)0.0065 (5)0.0040 (5)
C200.0230 (6)0.0228 (6)0.0257 (6)0.0008 (5)0.0049 (5)0.0037 (5)
O200.0282 (4)0.0365 (5)0.0252 (4)0.0074 (4)0.0018 (3)0.0020 (4)
C210.0417 (8)0.0261 (7)0.0322 (7)0.0024 (6)0.0005 (5)0.0038 (5)
C300.0295 (6)0.0231 (7)0.0194 (5)0.0009 (5)0.0052 (4)0.0040 (5)
O300.0400 (5)0.0234 (5)0.0350 (5)0.0045 (4)0.0048 (4)0.0043 (4)
C310.0267 (7)0.0317 (7)0.0353 (6)0.0023 (5)0.0020 (5)0.0048 (6)
Geometric parameters (Å, º) top
C1—N11.1424 (15)C21—H21B0.9799
C1—C21.4771 (17)C21—H21C0.9800
C2—O21.4310 (13)C21—H21D0.9799
C2—C31.5259 (16)C21—H21E0.9801
C2—H2A1.0000C21—H21F0.9801
C3—O31.4272 (14)C30—O301.1973 (14)
C3—C41.4839 (16)C30—C311.4837 (16)
C3—H3A1.0000C31—H31A0.9801
C4—N41.1369 (14)C31—H31B0.9800
O2—C201.3737 (13)C31—H31C0.9798
O3—C301.3735 (14)C31—H31D0.9799
C20—O201.1969 (13)C31—H31E0.9800
C20—C211.4857 (16)C31—H31F0.9800
C21—H21A0.9800
N1—C1—C2177.95 (13)H21C—C21—H21E52.2
O2—C2—C1107.07 (9)H21D—C21—H21E109.9
O2—C2—C3109.45 (8)C20—C21—H21F109.9
C1—C2—C3110.87 (10)H21A—C21—H21F51.4
O2—C2—H2A109.8H21B—C21—H21F60.9
C1—C2—H2A109.8H21C—C21—H21F140.3
C3—C2—H2A109.8H21D—C21—H21F109.9
O3—C3—C4109.10 (9)H21E—C21—H21F108.3
O3—C3—C2105.99 (9)O30—C30—O3121.75 (10)
C4—C3—C2112.21 (9)O30—C30—C31127.46 (11)
O3—C3—H3A109.8O3—C30—C31110.78 (10)
C4—C3—H3A109.8C30—C31—H31A109.5
C2—C3—H3A109.8C30—C31—H31B109.6
N4—C4—C3179.74 (14)H31A—C31—H31B109.5
C20—O2—C2116.36 (8)C30—C31—H31C109.4
C30—O3—C3115.91 (9)H31A—C31—H31C109.5
O20—C20—O2122.82 (11)H31B—C31—H31C109.5
O20—C20—C21127.14 (11)C30—C31—H31D109.0
O2—C20—C21110.03 (9)H31A—C31—H31D141.4
C20—C21—H21A109.5H31B—C31—H31D57.8
C20—C21—H21B109.5H31C—C31—H31D54.9
H21A—C21—H21B109.5C30—C31—H31E109.8
C20—C21—H21C109.5H31A—C31—H31E54.3
H21A—C21—H21C109.5H31B—C31—H31E140.6
H21B—C21—H21C109.5H31C—C31—H31E58.0
C20—C21—H21D108.8H31D—C31—H31E109.9
H21A—C21—H21D141.5C30—C31—H31F110.0
H21B—C21—H21D52.0H31A—C31—H31F57.2
H21C—C21—H21D60.8H31B—C31—H31F55.2
C20—C21—H21E109.9H31C—C31—H31F140.6
H21A—C21—H21E60.1H31D—C31—H31F109.9
H21B—C21—H21E140.4H31E—C31—H31F108.3
O2—C2—C3—O358.33 (11)C4—C3—O3—C3094.79 (11)
C1—C2—C3—O3176.21 (9)C2—C3—O3—C30144.19 (9)
O2—C2—C3—C460.66 (12)C2—O2—C20—O202.15 (15)
C1—C2—C3—C457.22 (12)C2—O2—C20—C21177.08 (9)
C1—C2—O2—C20129.58 (9)C3—O3—C30—O301.49 (15)
C3—C2—O2—C20110.19 (10)C3—O3—C30—C31179.53 (9)
(1c) top
Crystal data top
C18H12N2O4Z = 1
Mr = 320.30F(000) = 166
Triclinic, P1Dx = 1.354 Mg m3
a = 5.7840 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3241 (18) ÅCell parameters from 690 reflections
c = 10.229 (3) Åθ = 2.2–26.0°
α = 106.26 (2)°µ = 0.10 mm1
β = 105.30 (2)°T = 295 K
γ = 96.55 (2)°Plate, colourless
V = 392.90 (18) Å30.40 × 0.20 × 0.10 mm
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
720 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω scansh = 77
3310 measured reflectionsk = 98
1526 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113Riding
S = 0.87 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
1526 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7067 (4)0.3356 (4)0.0651 (2)0.1004 (8)
C10.6776 (4)0.2093 (4)0.0243 (2)0.0733 (7)
C20.6353 (3)0.0443 (3)0.02731 (18)0.0582 (6)
H2A0.72990.05260.00420.070*
O20.6942 (2)0.10852 (19)0.17988 (12)0.0571 (4)
C200.9385 (4)0.1618 (3)0.25485 (18)0.0484 (5)
O201.0897 (3)0.1597 (2)0.19460 (14)0.0721 (5)
C210.9803 (3)0.2197 (2)0.41001 (17)0.0425 (5)
C221.2117 (4)0.3173 (3)0.4994 (2)0.0521 (5)
H22A1.33500.34500.46090.063*
C231.2594 (4)0.3735 (3)0.6457 (2)0.0634 (6)
H23A1.41450.44080.70600.076*
C241.0797 (5)0.3305 (3)0.7026 (2)0.0649 (6)
H24A1.11320.36790.80140.078*
C250.8507 (4)0.2327 (3)0.6147 (2)0.0601 (6)
H25A0.72900.20330.65390.072*
C260.8002 (4)0.1778 (3)0.4680 (2)0.0516 (5)
H26A0.64400.11230.40830.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0971 (17)0.126 (2)0.0553 (13)0.0152 (16)0.0036 (12)0.0280 (13)
C10.0633 (16)0.103 (2)0.0341 (12)0.0084 (15)0.0072 (11)0.0106 (12)
C20.0433 (11)0.0877 (16)0.0270 (10)0.0052 (12)0.0070 (9)0.0002 (10)
O20.0389 (8)0.0883 (10)0.0280 (7)0.0079 (7)0.0046 (6)0.0016 (6)
C200.0393 (12)0.0567 (12)0.0397 (12)0.0105 (10)0.0074 (10)0.0054 (9)
O200.0454 (9)0.1107 (13)0.0463 (9)0.0106 (8)0.0160 (7)0.0042 (8)
C210.0386 (11)0.0491 (11)0.0328 (10)0.0124 (9)0.0047 (9)0.0069 (9)
C220.0433 (12)0.0538 (12)0.0481 (12)0.0083 (10)0.0044 (10)0.0093 (10)
C230.0570 (15)0.0632 (14)0.0458 (13)0.0070 (12)0.0088 (11)0.0059 (11)
C240.0811 (18)0.0686 (14)0.0352 (11)0.0196 (14)0.0069 (12)0.0105 (10)
C250.0656 (15)0.0707 (15)0.0449 (13)0.0155 (13)0.0190 (12)0.0176 (11)
C260.0439 (12)0.0593 (12)0.0427 (12)0.0065 (11)0.0063 (10)0.0112 (10)
Geometric parameters (Å, º) top
N1—C11.130 (3)C22—C231.377 (2)
C1—C21.468 (3)C22—H22A0.9300
C2—O21.430 (2)C23—C241.365 (3)
C2—C2i1.512 (4)C23—H23A0.9300
C2—H2A0.9800C24—C251.367 (3)
O2—C201.368 (2)C24—H24A0.9300
C20—O201.195 (2)C25—C261.380 (2)
C20—C211.468 (2)C25—H25A0.9300
C21—C261.373 (2)C26—H26A0.9300
C21—C221.382 (2)
N1—C1—C2179.0 (3)C23—C22—H22A120.1
O2—C2—C1110.77 (16)C21—C22—H22A120.1
O2—C2—C2i104.71 (17)C24—C23—C22120.20 (19)
C1—C2—C2i109.1 (2)C24—C23—H23A119.9
O2—C2—H2A110.7C22—C23—H23A119.9
C1—C2—H2A110.7C23—C24—C25120.29 (19)
C2i—C2—H2A110.7C23—C24—H24A119.9
C20—O2—C2115.70 (13)C25—C24—H24A119.9
O20—C20—O2121.10 (16)C24—C25—C26119.98 (19)
O20—C20—C21127.29 (18)C24—C25—H25A120.0
O2—C20—C21111.61 (15)C26—C25—H25A120.0
C26—C21—C22119.61 (16)C21—C26—C25120.07 (18)
C26—C21—C20122.50 (17)C21—C26—H26A120.0
C22—C21—C20117.89 (17)C25—C26—H26A120.0
C23—C22—C21119.84 (18)
C1—C2—O2—C2074.2 (2)C26—C21—C22—C230.7 (3)
C2i—C2—O2—C20168.31 (19)C20—C21—C22—C23179.67 (16)
C2—O2—C20—O202.3 (3)C21—C22—C23—C241.0 (3)
C2—O2—C20—C21178.29 (15)C22—C23—C24—C250.5 (3)
O20—C20—C21—C26165.4 (2)C23—C24—C25—C260.3 (3)
O2—C20—C21—C2615.2 (2)C22—C21—C26—C250.1 (3)
O20—C20—C21—C2213.5 (3)C20—C21—C26—C25178.87 (17)
O2—C20—C21—C22165.85 (16)C24—C25—C26—C210.6 (3)
Symmetry code: (i) x+1, y, z.
(2b) top
Crystal data top
C8H8N2O4Dx = 1.307 Mg m3
Mr = 196.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1149 reflections
a = 8.6112 (3) Åθ = 3.2–26.0°
b = 9.8185 (3) ŵ = 0.11 mm1
c = 11.7898 (3) ÅT = 295 K
V = 996.82 (5) Å3Cube, colourless
Z = 40.55 × 0.50 × 0.40 mm
F(000) = 408
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
980 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 26.0°, θmin = 3.2°
ω scansh = 810
7153 measured reflectionsk = 1211
1149 independent reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035Riding
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0755P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1149 reflectionsΔρmax = 0.19 e Å3
129 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0675 (3)0.6798 (3)0.25884 (18)0.0840 (7)
C10.0507 (3)0.5911 (2)0.19802 (17)0.0518 (5)
C20.0346 (2)0.47826 (19)0.11753 (15)0.0440 (4)
H20.01330.40010.15560.053*
C30.1917 (2)0.4360 (2)0.06801 (16)0.0461 (5)
H30.17770.35890.01630.055*
C40.2644 (2)0.5505 (3)0.00702 (17)0.0576 (6)
N40.3176 (3)0.6410 (3)0.0378 (3)0.0898 (8)
O20.05725 (14)0.51668 (14)0.02206 (11)0.0481 (4)
C200.2150 (2)0.5150 (2)0.03972 (19)0.0529 (5)
O200.26812 (19)0.4952 (2)0.13107 (14)0.0737 (5)
C210.3002 (3)0.5398 (3)0.0676 (2)0.0705 (7)
H2110.34140.63070.06740.085*
H2120.23060.52930.13060.085*
H2130.38380.47560.07440.085*
O30.28422 (17)0.39526 (15)0.16257 (11)0.0550 (4)
C300.4056 (2)0.3105 (2)0.13934 (18)0.0514 (5)
O300.4366 (2)0.28067 (19)0.04418 (15)0.0760 (5)
C310.4855 (3)0.2673 (3)0.2438 (2)0.0736 (7)
H3110.58770.23520.22530.088*
H3120.49320.34310.29480.088*
H3130.42760.19540.27930.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.1129 (19)0.0706 (13)0.0685 (12)0.0044 (15)0.0085 (13)0.0210 (11)
C10.0551 (12)0.0498 (11)0.0507 (10)0.0009 (10)0.0094 (9)0.0005 (9)
C20.0400 (9)0.0409 (10)0.0512 (9)0.0009 (8)0.0020 (8)0.0030 (8)
C30.0426 (10)0.0465 (10)0.0492 (9)0.0055 (9)0.0034 (8)0.0055 (8)
C40.0403 (10)0.0726 (14)0.0600 (11)0.0070 (11)0.0051 (9)0.0050 (11)
N40.0602 (13)0.1009 (17)0.1084 (17)0.0027 (13)0.0188 (13)0.0371 (16)
O20.0366 (7)0.0524 (8)0.0551 (7)0.0024 (6)0.0012 (6)0.0050 (6)
C200.0363 (10)0.0533 (11)0.0689 (11)0.0012 (9)0.0054 (9)0.0034 (10)
O200.0499 (9)0.0967 (13)0.0746 (9)0.0008 (9)0.0141 (8)0.0168 (10)
C210.0454 (12)0.0897 (17)0.0764 (14)0.0015 (13)0.0053 (11)0.0112 (14)
O30.0508 (8)0.0640 (9)0.0502 (7)0.0121 (7)0.0049 (6)0.0051 (7)
C300.0433 (10)0.0453 (10)0.0656 (12)0.0033 (9)0.0030 (9)0.0013 (10)
O300.0719 (12)0.0816 (11)0.0744 (10)0.0318 (10)0.0036 (9)0.0185 (9)
C310.0597 (14)0.0829 (18)0.0783 (14)0.0083 (14)0.0081 (12)0.0221 (13)
Geometric parameters (Å, º) top
N1—C11.137 (3)C20—C211.483 (3)
C1—C21.465 (3)C21—H2110.9600
C2—O21.426 (2)C21—H2120.9600
C2—C31.531 (3)C21—H2130.9600
C2—H20.9800O3—C301.364 (2)
C3—O31.428 (2)C30—O301.190 (3)
C3—C41.474 (3)C30—C311.473 (3)
C3—H30.9800C31—H3110.9600
C4—N41.130 (3)C31—H3120.9600
O2—C201.374 (2)C31—H3130.9600
C20—O201.186 (3)
N1—C1—C2177.9 (3)O2—C20—C21110.97 (18)
O2—C2—C1111.32 (16)C20—C21—H211109.5
O2—C2—C3105.11 (14)C20—C21—H212109.5
C1—C2—C3111.58 (15)H211—C21—H212109.5
O2—C2—H2109.6C20—C21—H213109.5
C1—C2—H2109.6H211—C21—H213109.5
C3—C2—H2109.6H212—C21—H213109.5
O3—C3—C4110.95 (16)C30—O3—C3116.23 (14)
O3—C3—C2105.75 (14)O30—C30—O3120.76 (19)
C4—C3—C2110.80 (16)O30—C30—C31127.8 (2)
O3—C3—H3109.8O3—C30—C31111.5 (2)
C4—C3—H3109.8C30—C31—H311109.5
C2—C3—H3109.8C30—C31—H312109.5
N4—C4—C3177.9 (3)H311—C31—H312109.5
C20—O2—C2115.17 (15)C30—C31—H313109.5
O20—C20—O2121.40 (19)H311—C31—H313109.5
O20—C20—C21127.63 (18)H312—C31—H313109.5
O2—C2—C3—O3179.14 (14)C2—O2—C20—O206.7 (3)
C1—C2—C3—O360.1 (2)C2—O2—C20—C21173.09 (19)
O2—C2—C3—C460.56 (19)C4—C3—O3—C3082.0 (2)
C1—C2—C3—C460.2 (2)C2—C3—O3—C30157.76 (15)
C1—C2—O2—C2079.8 (2)C3—O3—C30—O304.8 (3)
C3—C2—O2—C20159.25 (16)C3—O3—C30—C31175.84 (19)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds