Download citation
Download citation
link to html
Two new cocrystals of 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO, C6H12N2) with 1,2-di­iodo­ethene (1,2-C2H2I2) and 1,2-di­iodo­ethane (1,2-C2H4I2) com­plete a series of halogen-bond-assisted cocrystals which started with DABCO·C2I2 [Perkins et al. (2012). CrystEngComm, 14, 3033–3038]. The structural and com­­putational analysis of this series illustrate the correlation between the polarization of the I atom and the hybridization of the C atom bound to it. The formation of a rather stable halogen bond by the alkylic iodide of saturated 1,2-C2H4I2 was unusual and respective cocrystals are formed only in nonpolar solvents, while, in the polar medium of aceto­nitrile, a very intense reaction of DABCO quaternization takes place resulting in 1-(2-iodo­eth­yl)-4-aza-1-azonia­bi­cyclo­[2.2.2]octane triiodide, C8H16IN2+·I3 or [N(CH2CH2)3N–CH2CH2I][I3].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622009949/bs3003sup1.cif
Contains datablocks 2_dabco_c2h2i2, 3_dabco_c2h4i2, 4_ich2ch2-dabco_i3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009949/bs30032_dabco_c2h2i2sup2.hkl
Contains datablock 2_dabco_c2h2i2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622009949/bs30032_dabco_c2h2i2sup5.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009949/bs30033_dabco_c2h4i2sup3.hkl
Contains datablock 3_dabco_c2h4i2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622009949/bs30033_dabco_c2h4i2sup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009949/bs30034_ich2ch2-dabco_i3sup4.hkl
Contains datablock 4_ich2ch2-dabco_i3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622009949/bs30034_ich2ch2-dabco_i3sup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622009949/bs3003sup8.pdf
Additional table

CCDC references: 2191650; 2191649; 2191648

Computing details top

For all structures, data collection: APEX2 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,2-Diiodoethene–1,4-diazabicyclo[2.2.2]octane (1/1) (2_dabco_c2h2i2) top
Crystal data top
C2H2I2·C6H12N2F(000) = 728
Mr = 392.01Dx = 2.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6793 (3) ÅCell parameters from 9964 reflections
b = 17.5562 (8) Åθ = 2.4–31.5°
c = 9.9538 (4) ŵ = 5.53 mm1
β = 104.667 (1)°T = 100 K
V = 1129.18 (9) Å3Needle, colourless
Z = 40.52 × 0.09 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3836 reflections with I > 2σ(I)
φ and ω scansθmax = 31.5°, θmin = 2.3°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 99
Tmin = 0.451, Tmax = 0.746k = 025
4065 measured reflectionsl = 014
4065 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0204P)2 + 2.7249P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.74 e Å3
4065 reflectionsΔρmin = 1.23 e Å3
111 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00034 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

A Bruker SMART APEXII diffractometer equipped with a graphite-monochromator and a Bruker D8 Venture diffractometer (Mo Kα radiation (λ = 0.71070 Å) were used for the unit-cell determination and intensity data collection for crystals of 24. The data were collected by standard φω scan techniques, and were reduced using SAINT (Bruker, 2015). SADABS (Bruker, 2016) software was used for scaling and absorption correction. The structures were solved by direct methods and refined by full-matrix least-squares against F2 using OLEX2 (Dolomanov et al., 2009) and SHELXTL (Sheldrick, 2015). Non-H atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.70722 (3)0.35891 (2)0.54602 (2)0.01490 (5)
I20.29561 (3)0.39275 (2)0.90357 (2)0.01379 (5)
C10.5565 (5)0.34924 (18)0.7083 (3)0.0176 (5)
H10.5783610.3045240.7638440.021*
C20.4337 (4)0.40248 (18)0.7356 (3)0.0151 (5)
H20.4065210.4464430.6782510.018*
N10.9242 (4)0.37058 (13)0.3322 (3)0.0140 (4)
N21.1105 (4)0.37835 (13)0.1361 (3)0.0141 (4)
C30.7718 (4)0.37389 (17)0.1968 (3)0.0158 (5)
H3A0.6816730.4189730.1936310.019*
H3B0.6834750.3278250.1843130.019*
C40.8830 (4)0.37886 (18)0.0779 (3)0.0166 (5)
H4A0.8418290.3350840.0142040.020*
H4B0.8412960.4262380.0241700.020*
C51.0555 (5)0.43948 (17)0.3488 (3)0.0169 (5)
H5A1.1588650.4379330.4397300.020*
H5B0.9687100.4854010.3465640.020*
C61.1679 (5)0.44383 (17)0.2305 (3)0.0181 (5)
H6A1.1297290.4917510.1778110.022*
H6B1.3194500.4440290.2707280.022*
C71.0582 (5)0.30327 (17)0.3359 (3)0.0170 (5)
H7A0.9737280.2563230.3265620.020*
H7B1.1631910.3012880.4260680.020*
C81.1679 (5)0.30745 (17)0.2158 (3)0.0166 (5)
H8A1.3197090.3057430.2544330.020*
H8B1.1271320.2630410.1535730.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01604 (8)0.01710 (9)0.01331 (8)0.00030 (6)0.00698 (6)0.00011 (7)
I20.01403 (8)0.01533 (8)0.01339 (8)0.00006 (6)0.00601 (6)0.00014 (7)
C10.0193 (12)0.0197 (13)0.0158 (12)0.0008 (10)0.0084 (10)0.0023 (11)
C20.0155 (11)0.0194 (12)0.0124 (12)0.0004 (10)0.0071 (9)0.0031 (10)
N10.0156 (10)0.0157 (10)0.0122 (10)0.0015 (8)0.0063 (8)0.0004 (8)
N20.0147 (10)0.0174 (11)0.0119 (10)0.0016 (8)0.0063 (8)0.0004 (8)
C30.0126 (11)0.0201 (12)0.0149 (12)0.0004 (9)0.0042 (10)0.0005 (10)
C40.0161 (12)0.0221 (13)0.0118 (12)0.0015 (10)0.0037 (10)0.0015 (10)
C50.0201 (13)0.0166 (12)0.0154 (13)0.0011 (10)0.0066 (10)0.0038 (11)
C60.0186 (13)0.0172 (12)0.0198 (14)0.0029 (10)0.0074 (11)0.0008 (11)
C70.0204 (13)0.0168 (12)0.0153 (13)0.0031 (10)0.0070 (10)0.0048 (11)
C80.0185 (12)0.0172 (12)0.0166 (13)0.0030 (10)0.0092 (10)0.0002 (11)
Geometric parameters (Å, º) top
I1—C12.115 (3)C3—C41.551 (4)
I2—C22.111 (3)C4—H4A0.9900
C1—H10.9500C4—H4B0.9900
C1—C21.317 (4)C5—H5A0.9900
C2—H20.9500C5—H5B0.9900
N1—C31.470 (4)C5—C61.550 (4)
N1—C51.479 (4)C6—H6A0.9900
N1—C71.477 (4)C6—H6B0.9900
N2—C41.483 (4)C7—H7A0.9900
N2—C61.473 (4)C7—H7B0.9900
N2—C81.474 (4)C7—C81.553 (4)
C3—H3A0.9900C8—H8A0.9900
C3—H3B0.9900C8—H8B0.9900
I1—C1—H1118.6N1—C5—H5A109.7
C2—C1—I1122.9 (2)N1—C5—H5B109.7
C2—C1—H1118.6N1—C5—C6110.0 (2)
I2—C2—H2119.1H5A—C5—H5B108.2
C1—C2—I2121.8 (2)C6—C5—H5A109.7
C1—C2—H2119.1C6—C5—H5B109.7
C3—N1—C5108.9 (2)N2—C6—C5110.4 (2)
C3—N1—C7109.2 (2)N2—C6—H6A109.6
C7—N1—C5108.3 (2)N2—C6—H6B109.6
C6—N2—C4108.6 (2)C5—C6—H6A109.6
C6—N2—C8109.0 (2)C5—C6—H6B109.6
C8—N2—C4108.4 (2)H6A—C6—H6B108.1
N1—C3—H3A109.6N1—C7—H7A109.6
N1—C3—H3B109.6N1—C7—H7B109.6
N1—C3—C4110.3 (2)N1—C7—C8110.1 (2)
H3A—C3—H3B108.1H7A—C7—H7B108.2
C4—C3—H3A109.6C8—C7—H7A109.6
C4—C3—H3B109.6C8—C7—H7B109.6
N2—C4—C3110.1 (2)N2—C8—C7110.2 (2)
N2—C4—H4A109.6N2—C8—H8A109.6
N2—C4—H4B109.6N2—C8—H8B109.6
C3—C4—H4A109.6C7—C8—H8A109.6
C3—C4—H4B109.6C7—C8—H8B109.6
H4A—C4—H4B108.2H8A—C8—H8B108.1
I1—C1—C2—I2177.47 (13)C5—N1—C3—C458.9 (3)
N1—C3—C4—N20.3 (3)C5—N1—C7—C860.3 (3)
N1—C5—C6—N20.2 (3)C6—N2—C4—C359.2 (3)
N1—C7—C8—N21.6 (3)C6—N2—C8—C758.1 (3)
C3—N1—C5—C659.4 (3)C7—N1—C3—C459.1 (3)
C3—N1—C7—C858.1 (3)C7—N1—C5—C659.3 (3)
C4—N2—C6—C558.8 (3)C8—N2—C4—C359.1 (3)
C4—N2—C8—C760.1 (3)C8—N2—C6—C559.2 (3)
1,2-Diiodoethane–1,4-diazabicyclo[2.2.2]octane (1/1) (3_dabco_c2h4i2) top
Crystal data top
C2H4I2·C6H12N2Z = 2
Mr = 394.03F(000) = 368
Triclinic, P1Dx = 2.247 Mg m3
a = 6.3840 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9645 (6) ÅCell parameters from 9010 reflections
c = 10.5276 (7) Åθ = 2.9–32.5°
α = 92.007 (1)°µ = 5.36 mm1
β = 103.486 (1)°T = 100 K
γ = 95.254 (1)°Plate, colourless
V = 582.42 (7) Å30.32 × 0.24 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2717 reflections with I > 2σ(I)
φ and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 88
Tmin = 0.496, Tmax = 0.746k = 1212
3098 measured reflectionsl = 014
3098 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0072P)2 + 0.8348P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3098 reflectionsΔρmax = 0.57 e Å3
110 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

A Bruker SMART APEXII diffractometer equipped with a graphite-monochromator and a Bruker D8 Venture diffractometer (Mo Kα radiation (λ = 0.71070 Å) were used for the unit-cell determination and intensity data collection for crystals of 24. The data were collected by standard φω scan techniques, and were reduced using SAINT (Bruker, 2015). SADABS (Bruker, 2016) software was used for scaling and absorption correction. The structures were solved by direct methods and refined by full-matrix least-squares against F2 using OLEX2 (Dolomanov et al., 2009) and SHELXTL (Sheldrick, 2015). Non-H atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.66942 (2)0.22256 (2)0.52953 (2)0.01293 (5)
I20.26129 (2)0.27742 (2)0.88578 (2)0.01309 (5)
C10.5424 (4)0.1951 (3)0.7033 (3)0.0177 (5)
H1A0.4903000.0882810.7073880.021*
H1B0.6595990.2240740.7824090.021*
C20.3599 (4)0.2898 (3)0.7011 (3)0.0150 (5)
H2A0.2357910.2536500.6276470.018*
H2B0.4070100.3952100.6877900.018*
N10.8810 (3)0.2474 (2)0.3114 (2)0.0132 (4)
N21.0949 (3)0.2596 (2)0.1321 (2)0.0143 (4)
C31.0083 (4)0.1184 (3)0.3145 (3)0.0162 (5)
H3A0.9104040.0241070.3028450.019*
H3B1.1120830.1194800.4007360.019*
C41.1334 (4)0.1237 (3)0.2051 (3)0.0160 (5)
H4A1.2902410.1235340.2441540.019*
H4B1.0851350.0335140.1446640.019*
C50.7328 (4)0.2460 (3)0.1810 (3)0.0181 (5)
H5A0.6451030.3319990.1774220.022*
H5B0.6329020.1525330.1651490.022*
C60.8611 (4)0.2560 (3)0.0739 (3)0.0178 (5)
H6A0.8132360.1683480.0105600.021*
H6B0.8319190.3479080.0260290.021*
C71.0311 (4)0.3857 (3)0.3306 (3)0.0166 (5)
H7A1.1311560.3893220.4182790.020*
H7B0.9479500.4740830.3263300.020*
C81.1627 (4)0.3916 (3)0.2248 (3)0.0172 (5)
H8A1.1400340.4842160.1771570.021*
H8B1.3188640.3939250.2668370.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01249 (8)0.01556 (8)0.01126 (9)0.00097 (6)0.00403 (6)0.00069 (6)
I20.01261 (8)0.01584 (8)0.01139 (9)0.00152 (6)0.00401 (6)0.00030 (6)
C10.0187 (13)0.0243 (14)0.0138 (13)0.0066 (11)0.0088 (10)0.0052 (11)
C20.0160 (12)0.0171 (12)0.0134 (13)0.0025 (10)0.0059 (10)0.0036 (10)
N10.0119 (10)0.0168 (10)0.0114 (11)0.0016 (8)0.0037 (8)0.0021 (8)
N20.0113 (10)0.0192 (11)0.0130 (11)0.0027 (8)0.0036 (8)0.0022 (8)
C30.0186 (13)0.0155 (12)0.0155 (13)0.0013 (10)0.0060 (10)0.0028 (10)
C40.0172 (12)0.0137 (12)0.0194 (14)0.0055 (10)0.0070 (10)0.0030 (10)
C50.0111 (11)0.0301 (15)0.0131 (13)0.0038 (10)0.0021 (10)0.0015 (11)
C60.0144 (12)0.0278 (14)0.0114 (13)0.0026 (10)0.0033 (10)0.0018 (11)
C70.0220 (13)0.0135 (11)0.0147 (13)0.0014 (10)0.0056 (11)0.0005 (10)
C80.0163 (12)0.0140 (12)0.0219 (14)0.0008 (9)0.0063 (11)0.0021 (10)
Geometric parameters (Å, º) top
I1—C12.179 (3)C3—H3B0.9900
I2—C22.183 (3)C3—C41.547 (4)
C1—H1A0.9900C4—H4A0.9900
C1—H1B0.9900C4—H4B0.9900
C1—C21.500 (4)C5—H5A0.9900
C2—H2A0.9900C5—H5B0.9900
C2—H2B0.9900C5—C61.541 (4)
N1—C31.470 (3)C6—H6A0.9900
N1—C51.473 (3)C6—H6B0.9900
N1—C71.473 (3)C7—H7A0.9900
N2—C41.473 (3)C7—H7B0.9900
N2—C61.472 (3)C7—C81.543 (4)
N2—C81.473 (3)C8—H8A0.9900
C3—H3A0.9900C8—H8B0.9900
I1—C1—H1A109.5C3—C4—H4A109.6
I1—C1—H1B109.5C3—C4—H4B109.6
H1A—C1—H1B108.0H4A—C4—H4B108.1
C2—C1—I1110.94 (18)N1—C5—H5A109.5
C2—C1—H1A109.5N1—C5—H5B109.5
C2—C1—H1B109.5N1—C5—C6110.6 (2)
I2—C2—H2A109.7H5A—C5—H5B108.1
I2—C2—H2B109.7C6—C5—H5A109.5
C1—C2—I2109.62 (17)C6—C5—H5B109.5
C1—C2—H2A109.7N2—C6—C5110.5 (2)
C1—C2—H2B109.7N2—C6—H6A109.5
H2A—C2—H2B108.2N2—C6—H6B109.5
C3—N1—C5108.5 (2)C5—C6—H6A109.5
C3—N1—C7108.3 (2)C5—C6—H6B109.5
C7—N1—C5108.2 (2)H6A—C6—H6B108.1
C6—N2—C4108.5 (2)N1—C7—H7A109.5
C6—N2—C8108.6 (2)N1—C7—H7B109.5
C8—N2—C4108.4 (2)N1—C7—C8110.7 (2)
N1—C3—H3A109.5H7A—C7—H7B108.1
N1—C3—H3B109.5C8—C7—H7A109.5
N1—C3—C4110.7 (2)C8—C7—H7B109.5
H3A—C3—H3B108.1N2—C8—C7110.3 (2)
C4—C3—H3A109.5N2—C8—H8A109.6
C4—C3—H3B109.5N2—C8—H8B109.6
N2—C4—C3110.2 (2)C7—C8—H8A109.6
N2—C4—H4A109.6C7—C8—H8B109.6
N2—C4—H4B109.6H8A—C8—H8B108.1
I1—C1—C2—I2173.94 (11)C5—N1—C3—C457.4 (3)
N1—C3—C4—N22.0 (3)C5—N1—C7—C859.8 (3)
N1—C5—C6—N21.7 (3)C6—N2—C4—C359.9 (3)
N1—C7—C8—N22.0 (3)C6—N2—C8—C757.6 (3)
C3—N1—C5—C659.6 (3)C7—N1—C3—C459.9 (3)
C3—N1—C7—C857.6 (3)C7—N1—C5—C657.7 (3)
C4—N2—C6—C557.9 (3)C8—N2—C4—C357.8 (3)
C4—N2—C8—C760.1 (3)C8—N2—C6—C559.7 (3)
1-(2-Iodoethyl)-4-aza-1-azoniabicyclo[2.2.2]octane triiodide (4_ich2ch2-dabco_i3) top
Crystal data top
C8H16IN2+·I3Dx = 2.859 Mg m3
Mr = 647.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Cmc21Cell parameters from 9348 reflections
a = 7.9725 (3) Åθ = 2.5–30.5°
b = 16.2887 (7) ŵ = 8.26 mm1
c = 11.5886 (5) ÅT = 100 K
V = 1504.91 (11) Å3Prism, yellow
Z = 40.3 × 0.1 × 0.1 mm
F(000) = 1160
Data collection top
Bruker APEXII CCD
diffractometer
2394 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.5°, θmin = 2.5°
Tmin = 0.423, Tmax = 0.746h = 1111
12547 measured reflectionsk = 2323
2448 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0049P)2 + 0.3668P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.48 e Å3
2448 reflectionsΔρmin = 0.90 e Å3
98 parametersAbsolute structure: Flack x determined using 1116 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A Bruker SMART APEXII diffractometer equipped with a graphite-monochromator and a Bruker D8 Venture diffractometer (Mo Kα radiation (λ = 0.71070 Å) were used for the unit-cell determination and intensity data collection for crystals of 24. The data were collected by standard φω scan techniques, and were reduced using SAINT (Bruker, 2015). SADABS (Bruker, 2016) software was used for scaling and absorption correction. The structures were solved by direct methods and refined by full-matrix least-squares against F2 using OLEX2 (Dolomanov et al., 2009) and SHELXTL (Sheldrick, 2015). Non-H atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.5000000.22877 (2)0.63277 (3)0.01330 (7)
I30.5000000.13869 (2)0.10137 (3)0.01538 (7)
I40.5000000.04244 (2)0.11083 (3)0.01852 (8)
I20.5000000.24039 (2)0.31053 (3)0.01728 (8)
N20.5000000.4858 (3)1.1106 (4)0.0128 (9)
C20.5000000.3619 (3)0.8043 (5)0.0147 (10)
H20.602 (5)0.384 (3)0.760 (4)0.018*
C70.6533 (4)0.3830 (2)0.9909 (3)0.0127 (7)
H7A0.745 (5)0.394 (3)0.943 (4)0.015*
C30.5000000.4962 (3)0.8967 (6)0.0161 (11)
H30.400 (5)0.506 (3)0.851 (4)0.019*
N10.5000000.4040 (3)0.9204 (4)0.0126 (9)
C40.5000000.5419 (3)1.0125 (5)0.0166 (11)
C80.6496 (5)0.4337 (2)1.1030 (3)0.0161 (7)
H8A0.6521030.3960601.1700390.019*
H8B0.7509990.4687141.1066160.019*
C10.5000000.2683 (3)0.8090 (5)0.0145 (10)
H40.607 (5)0.578 (3)1.026 (4)0.017*
H10.400 (5)0.247 (3)0.850 (4)0.017*
H7B0.646 (6)0.327 (3)1.010 (4)0.025 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01618 (15)0.01272 (15)0.01101 (14)0.0000.0000.00385 (13)
I30.01358 (14)0.01467 (15)0.01790 (16)0.0000.0000.00405 (12)
I40.01875 (17)0.01674 (18)0.02009 (17)0.0000.0000.00048 (14)
I20.01749 (16)0.01924 (17)0.01510 (17)0.0000.0000.00315 (14)
N20.019 (2)0.0118 (19)0.008 (2)0.0000.0000.0020 (16)
C20.023 (3)0.011 (2)0.010 (2)0.0000.0000.000 (2)
C70.0160 (16)0.0108 (15)0.0112 (17)0.0034 (13)0.0028 (13)0.0007 (13)
C30.026 (3)0.010 (2)0.013 (3)0.0000.0000.001 (2)
N10.018 (2)0.012 (2)0.0075 (19)0.0000.0000.0014 (17)
C40.028 (3)0.010 (2)0.012 (2)0.0000.0000.0025 (19)
C80.0199 (18)0.0164 (17)0.0120 (16)0.0009 (13)0.0034 (13)0.0024 (14)
C10.018 (2)0.016 (2)0.009 (2)0.0000.0000.001 (2)
Geometric parameters (Å, º) top
I1—C12.141 (6)C7—C81.540 (5)
I3—I42.9164 (5)C7—H7B0.94 (5)
I3—I22.9359 (6)C3—H30.97 (4)
N2—C41.457 (7)C3—H3i0.97 (4)
N2—C8i1.466 (5)C3—N11.526 (7)
N2—C81.466 (5)C3—C41.535 (9)
C2—H21.03 (4)C4—H41.05 (5)
C2—N11.510 (7)C8—H8A0.9900
C2—C11.524 (7)C8—H8B0.9900
C7—H7A0.94 (5)C1—H1i0.99 (4)
C7—N11.509 (4)C1—H10.99 (4)
I4—I3—I2178.171 (16)C7i—N1—C2112.3 (3)
C4—N2—C8i108.4 (3)C7—N1—C2112.3 (3)
C4—N2—C8108.4 (3)C7—N1—C7i108.1 (4)
C8i—N2—C8108.8 (4)C7i—N1—C3108.7 (3)
N1—C2—H2106 (3)C7—N1—C3108.7 (3)
N1—C2—C1115.0 (5)N2—C4—C3112.2 (4)
C1—C2—H2112 (3)N2—C4—H4104 (2)
H7A—C7—H7B112 (4)C3—C4—H4114 (2)
N1—C7—H7A105 (3)N2—C8—C7112.1 (3)
N1—C7—C8108.7 (3)N2—C8—H8A109.2
N1—C7—H7B107 (3)N2—C8—H8B109.2
C8—C7—H7A114 (3)C7—C8—H8A109.2
C8—C7—H7B109 (3)C7—C8—H8B109.2
H3—C3—H3i111 (6)H8A—C8—H8B107.9
N1—C3—H3105 (3)I1—C1—H1110 (3)
N1—C3—H3i105 (3)I1—C1—H1i110 (3)
N1—C3—C4108.6 (5)C2—C1—I1105.5 (4)
C4—C3—H3i113 (3)C2—C1—H1i112 (3)
C4—C3—H3113 (3)C2—C1—H1112 (3)
C2—N1—C3106.6 (4)H1—C1—H1i107 (6)
N1—C2—C1—I1180.000 (1)C8—N2—C4—C359.0 (3)
N1—C7—C8—N21.1 (4)C8i—N2—C8—C757.8 (5)
N1—C3—C4—N20.000 (2)C8—C7—N1—C2175.5 (3)
C4—N2—C8—C759.9 (4)C8—C7—N1—C7i60.0 (5)
C4—C3—N1—C2180.000 (2)C8—C7—N1—C357.8 (4)
C4—C3—N1—C758.7 (3)C1—C2—N1—C761.0 (3)
C4—C3—N1—C7i58.7 (3)C1—C2—N1—C7i61.0 (3)
C8i—N2—C4—C359.0 (3)C1—C2—N1—C3180.000 (2)
Symmetry code: (i) x+1, y, z.
Maxima and minima of electrostatic potential in C2I2, C2H2I2 and C2H4I2 (PBE0/def2-TZVP; see Section 4.5 for additional computational details) top
I-atom σ-hole, Vs max (kcal mol-1)I-atom p-belt (and CC/CC bonds), Vs min (kcal mol-1)H atoms, Vs max (kcal mol-1)
C2I245.7-0.3 (CC -13.6 )n/a
C2H2I230.6-5.18 (CC -4.6)34.5
C2H4I223.7-7.4 -7.230.5
I···N distances, intermolecular energies and Vs max on I atom in 1-3 top
I···N distance (Å)I···N distance normalized to the sum of I and N vdW radii*I···N (kcal mol-1) (CE-B3LYP/DGDZVP)I, Vs max (kcal mol-1) (PBE0/def2-TZVP)
C(sp)—I···N**2.715 (3), 2.719 (4)73.510.49 10.5145.7
C(sp2)—I···N2.86 (1), 2.88 (1)77.66.86 7.1230.6
C(sp3)—I···N2.94 (3), 2.99 (2)80.15.43 5.6423.7
Notes: (*) using revised vdW radii (Alvarez, 2013); (**) structure reported by Perkins et al. (2012).
Intermolecular interaction energies in [I3][DABCO-CH2I] pair top
EeleEpolEdispErepEtotal
Enegy* (kcal mol-1) CE-B3LYP/DGDZVP-38.9-2.4-1.58.6-39.0
Scale factors1.0570.7400.8710.618
Note: (*) benchmarked energy model (Mackenzie et al., 2017).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds