Download citation
Download citation
link to html
The title complex, [Ni2(C8H9N2O3S)2(N3)2(H2O)2]·2H2O, was synthesized in a methanol–water solution. The asymmetric unit consists of two half-molecules of the complex and two water molecules. Four N and two O atoms form the coordination environment of each Ni atom, resulting in a distorted octa­hedral configuration. The two halves of each independent dimer are related by a crystallographic inversion centre, which lies at the centre of the ring formed by the two Ni atoms and the coordinating atoms of the two azide anions. The molecules are linked by O—H...O hydrogen bonds, generating an inter­esting double zigzag infinite chain structure in the ac plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030874/br6217sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030874/br6217Isup2.hkl
Contains datablock I

CCDC reference: 287456

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.054
  • wR factor = 0.121
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H1D .. H3C .. 2.02 Ang.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N6 PLAT354_ALERT_3_C Short O-H Bond (0.82A) O1W - H1C ... 0.69 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.25 Ratio
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Investigatation of Shiff base complexes including sulfur, and complexes of amino acid Schiff bases (Casella & Gullotti, 1981, 1986; Wang et al., 1994), have recently aroused considerable interest due to their antiviral, anticancer and antibaterial activities. Taurine, also known as 2-aminosulfonic acid, is indispensable to human beings and plays an important role in physiological functions. In this contribution, we present the synthesis and crystal structure of a new binuclear NiII dimer, (I), with a tridentate Schiff base ligand containing taurine.

The coordination sphere of the Ni atom (shown in Figs. 1 and 2) contains N1, N2, O1 from the tridentate Shiff base ligand, two N-atom donors (N5), N5i from a bridging azide anion, and O1W from a coordinating water molecule, resulting in a slightly distorted octahedral geometry. The two halves of the dimer are related by a crystallographic inversion center which lies at the center of a ring formed by the two Ni atoms and the end atoms of the two azide anions. The Ni1···Ni1i and Ni2···Ni2i separations are 3.216 and 3.259 Å, respectively, distances that are too long for a metal–metal bond (Vahrenkamp, 1978). The Ni1—N5—Ni1i and Ni2—N8—Ni2i angles are 100.48 (13) and 101.25 (12)°, respectively, both in the range 100–107° corresponding to a normal M—N—M bond angle (M = Cu, Ni, and MnII) (Chaudhuri et al., 1996). The two independent complex molecules in the unit (shown in Figs. 1 and 2) possess identical coordination environments. While there are significant differences between the bond lengths and angles of the two crystallographically independent molecules, they are all small and can probably be accounted for by differences in the packing. There is a 16-membered ring (–S–O–H–O–H–O–H–O–)2 between two neighouring units, formed by two intramolecular hydrogen bonds (O1W—H1D···O3W and O3W—H3C···O4ii; see Tables for all symmetry codes) and an intermolecular hydrogen bond (O1W—H1C···O5i) in each unit. The solvent water and the coordinating water, on the other hand, involve the neighbouring two units via O3W—H3C···O4ii and O4W—H4···O3iii, respectively, leading to an interesting double zigzag infinite chain structure in ac plane.

Experimental top

The potassium salt of the Schiff base ligand N-(2-pyridylmethylidene)taurine, L, was synthesized according to the approach of Zeng et al. (2003). L (1.0 mmol) in methanol (10 ml) was added dropwise to a stirred solution of Ni(ClO4)2·6H2O (1.0 mmol) in methanol and water (1:1 (v/v), 10 ml). To this mixed solution, a solution of sodium azide (2.0 mmol) in water and methanol (1:1 (v/v), 4 ml) was added slowly. The resulting deep-green solution was filtered and left to stand for two weeks to evaporate slowly at room temperature to give green prism-shaped single crystals in a yield of 65%. Analysis found (%): C 27.49, H 3.65, N 20.02, S 9.16; required (%): C 27.43, H 3.71, N 20.00, S 9.14. IR (KBr, ν, cm−1): 1041.9, 1152.8, 1187.7 (SO3); 1600, 1646.3 (CN + CC); 2065.5 (N3−1); 3508.8 (OH).

Refinement top

H atoms bonded to C atoms were treated theoretically, with C—H distances 0.93–0.97 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in difference maps and refined isotropically.

Computing details top

Data collection: CrystalClear (Rigaku Corp., 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing one of the two independent complex molecules, with displacement ellipsoids drawn at the 30% probability level. H atoms and solvent molecules have been omitted for clarity. Unlabelled atoms are related to labelled atoms by (−x + 1, −y + 1, −z).
[Figure 2] Fig. 2. The molecular structure of (I), showing the other independent complex molecule, with displacement ellipsoids drawn at the 30% probability level. H atoms and solvent molecules have been omitted for clarity. Unlabelled atoms are related to labelled atoms by (−x + 1, −y + 1, −z).
[Figure 3] Fig. 3. The double zigzag infinite chain structure of (I), linked via hydrogen bonds (dashed lines) running along the ab plane. H atoms have been omitted for clarity, except for those involved in hydrogen-bonded interactions.
Di-µ-azido-κ4N:N-bis{aqua[2-(2-pyridylmethylideneamino)ethanesulfonate- κ3N,N',O]nickel(II)} dihydrate top
Crystal data top
[Ni2(C8H9N2O3S)2(N3)2(H2O)2]·2H2OF(000) = 1440
Mr = 700.01Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5504 reflections
a = 15.6693 (17) Åθ = 3.0–27.5°
b = 10.4272 (8) ŵ = 1.66 mm1
c = 17.1803 (15) ÅT = 293 K
β = 110.503 (3)°Prism, green
V = 2629.2 (4) Å30.30 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6040 independent reflections
Radiation source: fine-focus sealed tube5108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 2019
Tmin = 0.756, Tmax = 0.876k = 1013
19894 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.9453P]
where P = (Fo2 + 2Fc2)/3
6011 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni2(C8H9N2O3S)2(N3)2(H2O)2]·2H2OV = 2629.2 (4) Å3
Mr = 700.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6693 (17) ŵ = 1.66 mm1
b = 10.4272 (8) ÅT = 293 K
c = 17.1803 (15) Å0.30 × 0.14 × 0.08 mm
β = 110.503 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6040 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
5108 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.876Rint = 0.045
19894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.54 e Å3
6011 reflectionsΔρmin = 0.49 e Å3
393 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.47744 (3)0.41826 (4)0.06977 (3)0.02484 (13)
Ni20.05221 (3)0.06711 (4)0.05646 (3)0.02482 (13)
S10.26621 (6)0.48457 (10)0.05298 (6)0.0316 (2)
S20.26217 (6)0.02283 (9)0.02754 (6)0.0321 (2)
C10.6756 (2)0.3229 (4)0.1165 (3)0.0356 (9)
H1A0.66670.32170.06010.043*
C20.7566 (3)0.2755 (4)0.1729 (3)0.0450 (11)
H2A0.80170.24440.15420.054*
C30.7698 (3)0.2747 (4)0.2557 (3)0.0479 (11)
H3A0.82300.24090.29390.057*
C40.7028 (3)0.3251 (4)0.2822 (3)0.0420 (10)
H4A0.71050.32700.33840.050*
C50.6249 (2)0.3721 (4)0.2238 (2)0.0312 (8)
C60.5500 (3)0.4289 (4)0.2444 (2)0.0356 (9)
H6A0.55560.44220.29950.043*
C70.4028 (3)0.5220 (5)0.2043 (3)0.0434 (10)
H7A0.39760.61060.18600.052*
H7B0.41590.52140.26390.052*
C80.3135 (3)0.4536 (4)0.1612 (2)0.0398 (10)
H8A0.27000.47970.18680.048*
H8B0.32310.36200.16970.048*
C90.1444 (2)0.1434 (4)0.1645 (2)0.0314 (8)
H9A0.15100.17440.11620.038*
C100.2187 (3)0.1495 (4)0.2387 (3)0.0375 (9)
H10A0.27400.18300.23950.045*
C110.2093 (3)0.1056 (4)0.3104 (2)0.0397 (9)
H11A0.25800.10920.36060.048*
C120.1262 (3)0.0556 (4)0.3070 (2)0.0372 (9)
H12A0.11800.02540.35490.045*
C130.0558 (3)0.0513 (4)0.2316 (2)0.0326 (8)
C140.0334 (3)0.0023 (4)0.2212 (2)0.0349 (9)
H14A0.04480.03630.26670.042*
C150.1849 (3)0.0560 (4)0.1411 (2)0.0354 (9)
H15A0.22520.01290.14420.043*
H15B0.17840.11450.18670.043*
C160.2270 (3)0.1264 (4)0.0600 (2)0.0337 (8)
H16A0.27930.17440.06180.040*
H16B0.18310.18730.05370.040*
N10.61047 (19)0.3700 (3)0.14119 (19)0.0297 (7)
N20.4777 (2)0.4597 (3)0.18598 (19)0.0314 (7)
N30.06452 (19)0.0947 (3)0.16037 (18)0.0286 (6)
N40.0954 (2)0.0023 (3)0.15019 (18)0.0285 (6)
N50.4927 (2)0.3935 (3)0.04533 (19)0.0316 (7)
N60.4626 (2)0.3090 (3)0.0932 (2)0.0355 (7)
N70.4343 (3)0.2276 (4)0.1396 (3)0.0709 (13)
N80.0083 (2)0.1148 (3)0.03134 (18)0.0292 (7)
N90.00501 (19)0.2078 (3)0.07410 (18)0.0273 (6)
N100.0171 (2)0.2969 (4)0.1157 (2)0.0471 (9)
O10.33410 (16)0.4430 (3)0.01762 (16)0.0345 (6)
O1W0.4497 (2)0.2260 (3)0.0764 (2)0.0472 (8)
H1C0.414 (3)0.198 (4)0.085 (3)0.041 (14)*
H1D0.498 (4)0.165 (5)0.080 (3)0.071 (16)*
O20.18401 (18)0.4083 (3)0.0219 (2)0.0506 (8)
O2W0.0474 (2)0.4272 (3)0.0904 (2)0.0457 (8)
H2C0.030 (3)0.502 (5)0.087 (3)0.036 (12)*
H2D0.082 (5)0.412 (6)0.071 (4)0.10 (3)*
O30.2500 (2)0.6210 (3)0.04502 (19)0.0489 (8)
O3W0.5766 (3)0.0460 (4)0.0901 (3)0.0583 (10)
H3C0.591 (4)0.060 (6)0.051 (4)0.08 (2)*
H3D0.552 (6)0.035 (9)0.075 (6)0.17 (4)*
O40.3233 (2)0.0703 (3)0.0135 (2)0.0543 (9)
O4W0.0922 (2)0.2551 (3)0.0651 (2)0.0351 (6)
H4D0.049 (3)0.315 (5)0.072 (3)0.049 (14)*
H4C0.133 (4)0.276 (5)0.032 (3)0.06 (2)*
O50.30620 (18)0.1043 (3)0.09880 (17)0.0429 (7)
O60.18003 (16)0.0372 (3)0.03319 (16)0.0340 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0244 (2)0.0273 (2)0.0234 (2)0.00064 (18)0.00912 (18)0.00156 (18)
Ni20.0265 (2)0.0253 (2)0.0250 (2)0.00004 (18)0.01198 (18)0.00167 (18)
S10.0244 (4)0.0365 (5)0.0344 (5)0.0032 (4)0.0111 (4)0.0000 (4)
S20.0292 (5)0.0339 (5)0.0361 (5)0.0019 (4)0.0149 (4)0.0039 (4)
C10.0317 (19)0.031 (2)0.046 (2)0.0019 (16)0.0160 (17)0.0052 (18)
C20.028 (2)0.033 (2)0.072 (3)0.0014 (17)0.015 (2)0.001 (2)
C30.032 (2)0.044 (3)0.054 (3)0.0051 (19)0.0016 (19)0.006 (2)
C40.041 (2)0.037 (2)0.036 (2)0.0016 (19)0.0003 (17)0.0003 (18)
C50.0262 (18)0.0317 (19)0.029 (2)0.0022 (15)0.0018 (15)0.0048 (16)
C60.038 (2)0.039 (2)0.0266 (19)0.0001 (17)0.0077 (16)0.0041 (17)
C70.044 (2)0.057 (3)0.032 (2)0.004 (2)0.0161 (18)0.011 (2)
C80.034 (2)0.059 (3)0.033 (2)0.0055 (19)0.0203 (17)0.0040 (19)
C90.0316 (19)0.031 (2)0.032 (2)0.0016 (16)0.0127 (16)0.0017 (16)
C100.034 (2)0.035 (2)0.043 (2)0.0042 (17)0.0126 (17)0.0051 (18)
C110.040 (2)0.038 (2)0.033 (2)0.0052 (18)0.0033 (18)0.0040 (18)
C120.044 (2)0.043 (2)0.0220 (19)0.0045 (18)0.0096 (16)0.0025 (17)
C130.038 (2)0.036 (2)0.0278 (19)0.0056 (16)0.0157 (16)0.0023 (16)
C140.043 (2)0.038 (2)0.029 (2)0.0006 (18)0.0182 (17)0.0028 (17)
C150.035 (2)0.041 (2)0.036 (2)0.0067 (17)0.0201 (17)0.0025 (17)
C160.0339 (19)0.0303 (19)0.040 (2)0.0057 (16)0.0166 (17)0.0056 (17)
N10.0250 (15)0.0311 (17)0.0328 (17)0.0029 (13)0.0100 (13)0.0017 (13)
N20.0317 (16)0.0374 (17)0.0267 (16)0.0017 (14)0.0122 (13)0.0026 (14)
N30.0306 (15)0.0295 (16)0.0269 (16)0.0024 (13)0.0116 (13)0.0001 (13)
N40.0356 (16)0.0277 (16)0.0280 (16)0.0026 (13)0.0184 (13)0.0006 (13)
N50.0404 (17)0.0281 (16)0.0294 (17)0.0050 (14)0.0161 (14)0.0013 (13)
N60.0433 (19)0.0310 (17)0.0324 (18)0.0021 (15)0.0134 (14)0.0005 (15)
N70.104 (4)0.042 (2)0.058 (3)0.016 (2)0.017 (2)0.022 (2)
N80.0372 (16)0.0270 (15)0.0294 (16)0.0030 (13)0.0192 (13)0.0070 (13)
N90.0278 (15)0.0274 (15)0.0276 (16)0.0037 (13)0.0107 (12)0.0003 (13)
N100.051 (2)0.040 (2)0.048 (2)0.0003 (17)0.0145 (17)0.0152 (18)
O10.0246 (12)0.0492 (17)0.0302 (14)0.0029 (11)0.0103 (11)0.0036 (12)
O1W0.0354 (17)0.0308 (16)0.084 (3)0.0023 (14)0.0312 (17)0.0105 (15)
O20.0309 (15)0.065 (2)0.060 (2)0.0103 (14)0.0201 (14)0.0179 (17)
O2W0.0520 (19)0.0336 (18)0.061 (2)0.0008 (15)0.0319 (17)0.0013 (15)
O30.0527 (18)0.0390 (17)0.0485 (18)0.0135 (14)0.0094 (14)0.0043 (14)
O3W0.070 (2)0.050 (2)0.072 (3)0.0053 (18)0.046 (2)0.0009 (19)
O40.0560 (19)0.0500 (19)0.070 (2)0.0173 (15)0.0387 (17)0.0145 (17)
O4W0.0338 (16)0.0277 (14)0.0451 (18)0.0033 (13)0.0153 (14)0.0022 (13)
O50.0350 (15)0.0545 (18)0.0361 (16)0.0161 (13)0.0085 (12)0.0026 (14)
O60.0285 (13)0.0379 (15)0.0337 (14)0.0076 (11)0.0088 (11)0.0069 (12)
Geometric parameters (Å, º) top
Ni1—N22.042 (3)C9—C101.395 (5)
Ni1—O1W2.063 (3)C9—H9A0.9300
Ni1—N12.077 (3)C10—C111.369 (6)
Ni1—N52.089 (3)C10—H10A0.9300
Ni1—N5i2.094 (3)C11—C121.385 (6)
Ni1—O12.122 (2)C11—H11A0.9300
Ni2—O62.078 (2)C12—C131.376 (5)
Ni2—N32.080 (3)C12—H12A0.9300
Ni2—O4W2.079 (3)C13—N31.356 (5)
Ni2—N42.083 (3)C13—C141.458 (5)
Ni2—N82.103 (3)C14—N41.266 (5)
Ni2—N8ii2.113 (3)C14—H14A0.9300
S1—O31.443 (3)C15—N41.466 (4)
S1—O21.447 (3)C15—C161.506 (5)
S1—O21.447 (3)C15—H15A0.9700
S1—O11.463 (3)C15—H15B0.9700
S1—C81.774 (4)C16—H16A0.9700
S2—O41.442 (3)C16—H16B0.9700
S2—O51.451 (3)N5—N61.186 (4)
S2—O61.465 (2)N5—Ni1i2.094 (3)
S2—C161.775 (4)N6—N71.141 (5)
C1—N11.329 (5)N8—N91.190 (4)
C1—C21.391 (6)N8—Ni2ii2.113 (3)
C1—H1A0.9300N9—N101.147 (4)
C2—C31.365 (6)O1W—O3W2.684 (5)
C2—H2A0.9300O1W—O5ii2.723 (4)
C3—C41.387 (6)O1W—H1C0.69 (4)
C3—H3A0.9300O1W—H1D0.97 (6)
C4—C51.370 (5)O2W—O22.788 (4)
C4—H4A0.9300O2W—N10iii2.972 (5)
C5—N11.358 (5)O2W—H2C0.82 (5)
C5—C61.464 (5)O2W—H2D0.74 (7)
C6—N21.265 (5)O3W—O4iv2.765 (5)
C6—H6A0.9300O3W—N7v2.999 (6)
C7—N21.469 (5)O3W—H3C0.79 (7)
C7—C81.512 (6)O3W—H3D0.93 (10)
C7—H7A0.9700O4W—O2W2.743 (5)
C7—H7B0.9700O4W—O3iii2.843 (4)
C8—H8A0.9700O4W—H4D0.90 (5)
C8—H8B0.9700O4W—H4C0.72 (5)
C9—N31.329 (5)
N2—Ni1—O1W94.59 (13)N1—C5—C4122.6 (4)
N2—Ni1—N179.40 (12)N1—C5—C6113.9 (3)
O1W—Ni1—N185.38 (13)C4—C5—C6123.5 (4)
N2—Ni1—N5171.95 (12)N2—C6—C5118.9 (4)
O1W—Ni1—N591.63 (13)N2—C6—H6A120.6
N1—Ni1—N596.06 (12)C5—C6—H6A120.6
N2—Ni1—N5i94.22 (12)N2—C7—C8111.0 (3)
O1W—Ni1—N5i171.16 (13)N2—C7—H7A109.4
N1—Ni1—N5i95.56 (12)C8—C7—H7A109.4
N5—Ni1—N5i79.52 (13)N2—C7—H7B109.4
N2—Ni1—O191.50 (11)C8—C7—H7B109.4
O1W—Ni1—O185.91 (12)H7A—C7—H7B108.0
N1—Ni1—O1166.85 (11)C7—C8—S1113.8 (3)
N5—Ni1—O194.03 (11)C7—C8—H8A108.8
N5i—Ni1—O194.55 (11)S1—C8—H8A108.8
O6—Ni2—N3170.41 (11)C7—C8—H8B108.8
O6—Ni2—O4W87.60 (12)S1—C8—H8B108.8
N3—Ni2—O4W90.27 (13)H8A—C8—H8B107.7
O6—Ni2—N491.76 (11)N3—C9—C10122.3 (4)
N3—Ni2—N479.10 (12)N3—C9—H9A118.8
O4W—Ni2—N494.86 (12)C10—C9—H9A118.8
O6—Ni2—N893.65 (11)C11—C10—C9119.3 (4)
N3—Ni2—N895.79 (12)C11—C10—H10A120.4
O4W—Ni2—N892.95 (12)C9—C10—H10A120.4
N4—Ni2—N8170.68 (12)C10—C11—C12118.9 (4)
O6—Ni2—N8ii90.69 (12)C10—C11—H11A120.5
N3—Ni2—N8ii92.77 (12)C12—C11—H11A120.5
O4W—Ni2—N8ii171.40 (11)C13—C12—C11118.9 (4)
N4—Ni2—N8ii93.62 (11)C13—C12—H12A120.5
N8—Ni2—N8ii78.75 (12)C11—C12—H12A120.5
O3—S1—O2113.72 (19)N3—C13—C12122.5 (4)
O3—S1—O1112.46 (18)N3—C13—C14114.4 (3)
O2—S1—O1111.49 (17)C12—C13—C14123.1 (3)
O3—S1—C8105.9 (2)N4—C14—C13119.8 (3)
O2—S1—C8106.15 (19)N4—C14—H14A120.1
O1—S1—C8106.49 (16)C13—C14—H14A120.1
O4—S2—O5112.83 (19)N4—C15—C16112.2 (3)
O4—S2—O6111.96 (18)N4—C15—H15A109.2
O5—S2—O6111.32 (16)C16—C15—H15A109.2
O4—S2—C16107.15 (19)N4—C15—H15B109.2
O5—S2—C16105.88 (18)C16—C15—H15B109.2
O6—S2—C16107.26 (16)H15A—C15—H15B107.9
C1—N1—Ni1128.7 (3)C15—C16—S2113.1 (3)
C5—N1—Ni1112.3 (2)C15—C16—H16A109.0
C6—N2—Ni1114.6 (3)S2—C16—H16A109.0
C7—N2—Ni1125.2 (2)C15—C16—H16B109.0
C9—N3—Ni2128.8 (2)S2—C16—H16B109.0
C13—N3—Ni2113.1 (2)H16A—C16—H16B107.8
C14—N4—Ni2113.4 (2)Ni1—O1W—O3W121.32 (16)
C15—N4—Ni2127.4 (2)Ni1—O1W—O5ii131.37 (16)
N6—N5—Ni1126.8 (3)O3W—O1W—O5ii106.56 (15)
N6—N5—Ni1i128.3 (3)Ni1—O1W—H1C128 (4)
Ni1—N5—Ni1i100.48 (13)O3W—O1W—H1C109 (4)
N7—N6—N5179.4 (5)Ni1—O1W—H1D118 (3)
N9—N8—Ni2127.5 (2)O5ii—O1W—H1D110 (3)
N9—N8—Ni2ii127.2 (2)H1C—O1W—H1D112 (5)
Ni2—N8—Ni2ii101.25 (12)O2—O2W—N10iii108.40 (14)
N10—N9—N8179.2 (4)O2—O2W—H2C108 (3)
S1—O1—Ni1132.57 (16)N10iii—O2W—H2D117 (5)
S2—O6—Ni2131.01 (16)H2C—O2W—H2D116 (6)
N1—C1—C2121.7 (4)O4iv—O3W—N7v111.77 (16)
N1—C1—H1A119.2N7v—O3W—H3C118 (5)
C2—C1—H1A119.2O4iv—O3W—H3D100 (6)
C3—C2—C1119.8 (4)H3C—O3W—H3D98 (7)
C3—C2—H2A120.1Ni2—O4W—O2W112.61 (15)
C1—C2—H2A120.1Ni2—O4W—O3iii126.47 (16)
C2—C3—C4119.0 (4)O2W—O4W—O3iii105.51 (14)
C2—C3—H3A120.5Ni2—O4W—H4D116 (3)
C4—C3—H3A120.5O3iii—O4W—H4D102 (3)
C5—C4—C3118.6 (4)Ni2—O4W—H4C116 (5)
C5—C4—H4A120.7O2W—O4W—H4C111 (4)
C3—C4—H4A120.7H4D—O4W—H4C108 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O5ii0.69 (4)2.04 (5)2.723 (4)173 (5)
O1W—H1D···O3W0.97 (6)1.71 (6)2.684 (5)174 (5)
O2W—H2C···N10iii0.82 (5)2.19 (5)2.972 (5)162 (4)
O2W—H2D···O20.74 (7)2.06 (7)2.788 (4)168 (7)
O3W—H3C···O4iv0.79 (7)2.03 (7)2.765 (5)156 (6)
O3W—H3D···N7v0.93 (10)2.27 (10)2.999 (6)136 (8)
O4W—H4C···O3iii0.72 (5)2.14 (5)2.843 (4)165 (6)
O4W—H4D···O2W0.90 (5)1.85 (5)2.743 (5)175 (4)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C8H9N2O3S)2(N3)2(H2O)2]·2H2O
Mr700.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.6693 (17), 10.4272 (8), 17.1803 (15)
β (°) 110.503 (3)
V3)2629.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.30 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.756, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
19894, 6040, 5108
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.121, 1.15
No. of reflections6011
No. of parameters393
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.49

Computer programs: CrystalClear (Rigaku Corp., 2000), CrystalClear, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a).

Selected geometric parameters (Å, º) top
Ni1—N22.042 (3)Ni2—O62.078 (2)
Ni1—O1W2.063 (3)Ni2—N32.080 (3)
Ni1—N12.077 (3)Ni2—O4W2.079 (3)
Ni1—N52.089 (3)Ni2—N42.083 (3)
Ni1—N5i2.094 (3)Ni2—N82.103 (3)
Ni1—O12.122 (2)Ni2—N8ii2.113 (3)
O1W—Ni1—N5i171.16 (13)O4W—Ni2—N8ii171.40 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O5ii0.69 (4)2.04 (5)2.723 (4)173 (5)
O1W—H1D···O3W0.97 (6)1.71 (6)2.684 (5)174 (5)
O2W—H2D···O20.74 (7)2.06 (7)2.788 (4)168 (7)
O3W—H3C···O4iii0.79 (7)2.03 (7)2.765 (5)156 (6)
O4W—H4C···O3iv0.72 (5)2.14 (5)2.843 (4)165 (6)
O4W—H4D···O2W0.90 (5)1.85 (5)2.743 (5)175 (4)
Symmetry codes: (ii) x, y, z; (iii) x+1, y, z; (iv) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds