Download citation
Download citation
link to html
The title compound, (C6H14N2)[NiCl3(H2O)3]Cl·H2O, contains doubly protonated 1,4-diazo­niabi­cyclo­[2.2.2]­octane (dabconium) (C6H14N2)2+ cations, mer-[NiII(H2O)3Cl3] octahedra, [mean Ni—O = 2.054 (2) Å and mean Ni—Cl = 2.4272 (6) Å] and additional (non-coordinated) chloride ions and water mol­ecules. These species interact by way of numerous O—H...O, O—H...Cl and N—H...Cl hydrogen bonds and possible C—H...Cl interactions [mean H...Cl = 2.75 Å, mean C...Cl = 3.575 (3) Å and mean C—H...Cl = 142°] to result in a structure with a layered character. (C6H14N2)[Ni(H2O)3Cl3]Cl·H2O is isostructural with its manganese(II)-containing congener.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018555/br6114sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018555/br6114Isup2.hkl
Contains datablock I

CCDC reference: 222824

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.027
  • wR factor = 0.075
  • Data-to-parameter ratio = 21.3

checkCIF/PLATON results

No syntax errors found



Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. bright STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.478 From the CIF: _refine_ls_abs_structure_Flack_su 0.012 PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.99 PLAT033_ALERT_2_C Flack Parameter Value Deviates from Zero ....... 0.48 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT355_ALERT_3_C Long O-H Bond (0.82A) O4 - H9 = 1.01 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 H2 O
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 3303 Count of symmetry unique reflns 1925 Completeness (_total/calc) 171.58% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1378 Fraction of Friedel pairs measured 0.716 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The title compound, (I) (Fig. 1), arose as a by-product during our synthetic investigations of organically templated nickel(II) phosphate networks (Guillou et al., 2001). Compound (I) is isostructural with (C6H14N2)[Mn(H2O)3X3X·H2O (X = Cl and Br) as described by Feist et al. (1997). Related compounds built up from (C6H14N2)2+ 1,4-diazoniabicyclo[2.2.2]octane (dabconium) cations, metal-chloride/water polyhedra, and `extra' (non-coordinated) chloride ions include (C6H14N2)[Cu(H2O)2Cl3]·Cl·H2O (Wei & Willett, 1996), containing trigonal bipyramidal [CuII(H2O)2Cl3] groupings, and (C6H14N2)[Fe(H2O)2Cl4]·Cl (James et al., 2001), containing trans-[FeIII(H2O)2Cl4] octahedra. The structures, spectroscopic properties and thermal behaviour of these types of materials have been reviewed by Bentrup et al. (1999).

In (I), three water molecules [mean Ni—O = 2.054 (2) Å] and three chloride ions [mean Ni—Cl = 2.4272 (6) Å] surround the nickel(II) cation in meridional (mer) conformation [spread of cis bond angles is 86.47 (5)–95.36 (5)°]. The dabconium cation has typical (Bremner & Harrison, 2003) geometrical parameters [mean N—C = 1.502 (3) Å, mean C—C = 1.532 (3) Å, mean C—N—C = 109.6 (2)° and mean N—C—C = 108.1 (2)°]. In addition, an uncoordinated water molecule (O4) and chloride ion (Cl4) are present in the structure.

The component species in (I) interact by way of an extensive network of O—H···O, O—H···Cl, N—H···Cl and N—H···(Cl,Cl) hydrogen bonds and possible C—H···Cl interactions (Table 2). This results in sheets of stoichiometry {[Ni(H2O)3Cl3]·Cl·H2O}2− propagating in the (001) plane (Fig. 2). The [Ni(H2O)3Cl3] moieties interact in the [100] direction by way of interoctahedral O3—H8···Cl3ii bonds and a pair of unusual O2—H5···Cl4ii···H4ii—O1ii and O2—H6···O4iii—H10iii···O1ii bonds, which connect adjacent octahedra via the non-coordinated Cl4 and O4 (water) species, respectively. Crosslinking in the [010] direction is provided by O1—H3···Cl3i O3—H7···Cl4iv, and O4—H9···Cl2 bonds (see Table 2 for the acceptor-atom symmetry codes). Thus, atom Cl4 accepts three conventional O—H···Cl hydrogen bonds [mean H···Cl4 = 2.20 Å, mean O···Cl4 = 3.094 (2) Å and mean O—H···Cl4 = 172°] in very asymmetric, roughly pyramidal, coordination.

The organic species serves to bridge the {[Ni(H2O)3Cl3)]·Cl·H2O}2− sheets in the [001] direction. One N/H group makes a simple N1—H1···Cl2 link, and one makes a bifurcated N2—H2···Cl1v,Cl3v link (mean Cl1v···H2···Cl3v = 87°; see Table 2 for acceptor-atom symmetry codes). The energetics of N—H···Cl—M (M = metal atom) interactions, and their possible role as synthons in supramolecular chemistry are described in detail by Brammer et al. (2002).

A PLATON analysis (Spek, 2003) of (I) indicated the presence (Table 2) of a number of C—H···Cl interactions [mean H···Cl = 2.75 Å, mean C···Cl = 3.575 (3) Å and mean C—H···Cl = 142°]. If these are not merely artefacts of the crystal packing, then atom Cl4 accepts no fewer than five of these weak bonds, in addition to the three O—H···Cl4 links, as shown in Fig. 4 (PLATON van der Waals radius sum of H and Cl = 2.95 Å; next-nearest Cl4···H contact = 3.23 Å).

Experimental top

NiCl2 (10 ml, 1 M), H3PO4 (10 ml, 1 M) and dabco (0.5 g, C6H12N2) were mixed together in a plastic bottle and heated at 373 K for 24 h, producing a green solution. The solution was cooled to room temperature, and bright- green plate-shaped crystals of (I) grew as water evaporated slowly from the viscous liquors over several weeks.

Refinement top

H atoms attached to O atoms were located from difference maps and treated as riding in their as-found locations. H atoms attached to C and N atoms were placed in idealized locations (N—H = 0.93 Å and C—H = 0.99 Å) and treated as riding on their attached atom. The constraint Uiso(H) = 1.2Ueq(parent atom) was applied in all cases. Refinement of the Flack (1983) absolute structure parameter to 0.478 (12) indicated a merohedrally twinned crystal.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ATOMS (Shape software, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) (50% displacement ellipsoids) H atoms are shown as arbitrary spheres and H atoms attached to C atoms have been omitted for clarity Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A detail of (I), showing part of an {[Ni(H2O)3Cl3]·Cl·H2O}2− sheet viewed down [001]. Colour key: [Ni(H2O)3Cl3)] octahedra green, Cl atoms green, O atoms red and H atoms grey (all radii arbitrary). The H···A portions of the H···O and H···Cl hydrogen bonds are coloured yellow and orange, respectively. Symmetry codes as in Table 2.
[Figure 3] Fig. 3. The unit-cell packing in (I), viewed down [010]. Colour key as in Fig. 2; additionally, C atoms blue, N atoms purple. H atoms attached to C atoms have been omitted for clarity.
[Figure 4] Fig. 4. The environment of atom Cl4 in (I), showing the O—H···Cl hydrogen bonds and possible C—H···Cl interactions associated with this species. Colour key as in Fig. 2; additionally, the H···Cl portions of the C—H···Cl contacts are highlighted in blue. [Symmetry codes: (i) 1/2 + x, 1/2 − y, −z; (ii) 1 − x, 1/2 + y, 1/2 − z; (iii) x − 1/2, 1/2 − y, −z; (iv) x − 1, y, z.]
(I) top
Crystal data top
(C6H14N2)[NiCl3(H2O)3]Cl·H2OF(000) = 800
Mr = 386.77Dx = 1.772 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6654 reflections
a = 6.7019 (1) Åθ = 2.9–27.5°
b = 11.9573 (2) ŵ = 2.08 mm1
c = 18.0923 (4) ÅT = 120 K
V = 1449.86 (5) Å3Block, bright green
Z = 40.35 × 0.26 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
3303 independent reflections
Radiation source: fine-focus sealed tube3224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 88
Tmin = 0.517, Tmax = 0.745k = 1512
10211 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (N-H and C-H)
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.3311P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
3303 reflectionsΔρmax = 0.44 e Å3
155 parametersΔρmin = 0.78 e Å3
0 restraintsAbsolute structure: Flack (1983), 1395 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.478 (12)
Crystal data top
(C6H14N2)[NiCl3(H2O)3]Cl·H2OV = 1449.86 (5) Å3
Mr = 386.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7019 (1) ŵ = 2.08 mm1
b = 11.9573 (2) ÅT = 120 K
c = 18.0923 (4) Å0.35 × 0.26 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
3303 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3224 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 0.745Rint = 0.044
10211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.44 e Å3
S = 1.15Δρmin = 0.78 e Å3
3303 reflectionsAbsolute structure: Flack (1983), 1395 Friedel pairs
155 parametersAbsolute structure parameter: 0.478 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.68573 (4)0.16979 (2)0.255292 (16)0.00813 (9)
Cl10.69310 (9)0.19536 (5)0.38754 (3)0.01208 (12)
Cl20.71416 (9)0.14849 (5)0.12281 (3)0.01140 (13)
Cl30.37583 (8)0.06130 (5)0.26128 (3)0.01241 (13)
Cl40.20610 (9)0.35228 (5)0.12028 (3)0.01266 (13)
O10.5091 (2)0.30839 (14)0.24509 (9)0.0106 (3)
H30.55080.37670.24410.013*
H40.41540.32190.20730.013*
O20.9300 (3)0.27199 (15)0.25002 (10)0.0151 (4)
H50.98890.30000.21470.018*
H61.00200.29240.27770.018*
O30.8736 (3)0.03279 (14)0.26334 (9)0.0127 (4)
H70.83450.01650.30200.015*
H81.00220.05580.25960.015*
O40.7891 (3)0.14541 (15)0.14797 (9)0.0158 (4)
H90.79360.07020.17390.019*
H100.69460.17590.17420.019*
N10.3542 (3)0.03774 (18)0.04940 (11)0.0125 (4)
H10.43580.06570.08670.015*
N20.1371 (3)0.03752 (17)0.05157 (10)0.0104 (4)
H20.05540.06530.08880.013*
C10.2988 (4)0.13090 (19)0.00241 (13)0.0132 (4)
H110.41940.17360.01670.016*
H120.20430.18270.02200.016*
C20.4651 (4)0.0518 (2)0.00744 (14)0.0139 (5)
H210.52480.10600.04240.017*
H220.57380.01780.02200.017*
C30.1691 (4)0.0099 (2)0.08298 (13)0.0155 (5)
H310.10940.04430.11790.019*
H320.20080.07940.11040.019*
C40.2018 (4)0.0790 (2)0.07099 (13)0.0123 (5)
H410.08520.12410.08650.015*
H420.29850.07700.11230.015*
C50.3169 (4)0.1113 (2)0.04365 (13)0.0139 (5)
H510.37840.12470.09260.017*
H520.27800.18430.02230.017*
C60.0230 (4)0.0351 (2)0.02005 (13)0.0157 (5)
H610.04240.10820.02850.019*
H620.08150.02330.01800.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00727 (15)0.00854 (15)0.00858 (14)0.00022 (10)0.00030 (12)0.00027 (11)
Cl10.0137 (3)0.0143 (3)0.0082 (2)0.0029 (2)0.0006 (2)0.0003 (2)
Cl20.0111 (3)0.0149 (3)0.0083 (2)0.0014 (2)0.0002 (2)0.00116 (19)
Cl30.0097 (3)0.0113 (3)0.0162 (3)0.0018 (2)0.0002 (2)0.0008 (2)
Cl40.0112 (3)0.0166 (3)0.0102 (2)0.0004 (2)0.0000 (2)0.0017 (2)
O10.0096 (7)0.0098 (7)0.0126 (8)0.0011 (6)0.0006 (7)0.0006 (6)
O20.0136 (8)0.0221 (9)0.0097 (7)0.0091 (7)0.0012 (8)0.0005 (7)
O30.0092 (7)0.0150 (9)0.0141 (8)0.0026 (6)0.0022 (7)0.0035 (7)
O40.0143 (9)0.0201 (9)0.0131 (8)0.0013 (8)0.0027 (8)0.0009 (7)
N10.0114 (10)0.0143 (10)0.0118 (9)0.0004 (8)0.0059 (8)0.0016 (8)
N20.0099 (10)0.0144 (10)0.0071 (8)0.0029 (8)0.0001 (8)0.0026 (7)
C10.0135 (11)0.0102 (10)0.0160 (11)0.0000 (9)0.0009 (11)0.0001 (9)
C20.0123 (11)0.0154 (11)0.0141 (11)0.0039 (10)0.0009 (10)0.0002 (10)
C30.0140 (13)0.0214 (13)0.0112 (10)0.0039 (11)0.0005 (10)0.0011 (10)
C40.0115 (11)0.0130 (11)0.0124 (10)0.0015 (10)0.0019 (10)0.0032 (9)
C50.0143 (11)0.0139 (11)0.0136 (10)0.0025 (10)0.0024 (11)0.0030 (9)
C60.0115 (12)0.0258 (14)0.0097 (11)0.0051 (10)0.0044 (10)0.0045 (9)
Geometric parameters (Å, º) top
Ni1—O12.0451 (17)N2—C41.501 (3)
Ni1—O22.0453 (17)N2—C61.505 (3)
Ni1—O32.0713 (16)N2—H20.9300
Ni1—Cl12.4127 (6)C1—C41.532 (3)
Ni1—Cl22.4178 (6)C1—H110.9900
Ni1—Cl32.4512 (6)C1—H120.9900
O1—H30.8631C2—C51.533 (3)
O1—H40.9427C2—H210.9900
O2—H50.8217C2—H220.9900
O2—H60.7372C3—C61.531 (3)
O3—H70.9516C3—H310.9900
O3—H80.9074C3—H320.9900
O4—H91.0153C4—H410.9900
O4—H100.8714C4—H420.9900
N1—C31.495 (3)C5—H510.9900
N1—C11.503 (3)C5—H520.9900
N1—C21.508 (3)C6—H610.9900
N1—H10.9300C6—H620.9900
N2—C51.500 (3)
O1—Ni1—O288.58 (7)N1—C1—C4108.04 (18)
O1—Ni1—O3177.70 (7)N1—C1—H11110.1
O2—Ni1—O389.38 (7)C4—C1—H11110.1
O1—Ni1—Cl189.92 (5)N1—C1—H12110.1
O2—Ni1—Cl187.37 (5)C4—C1—H12110.1
O3—Ni1—Cl191.04 (5)H11—C1—H12108.4
O1—Ni1—Cl292.38 (5)N1—C2—C5108.28 (19)
O2—Ni1—Cl287.34 (5)N1—C2—H21110.0
O3—Ni1—Cl286.47 (5)C5—C2—H21110.0
Cl1—Ni1—Cl2174.18 (2)N1—C2—H22110.0
O1—Ni1—Cl386.69 (5)C5—C2—H22110.0
O2—Ni1—Cl3175.26 (6)H21—C2—H22108.4
O3—Ni1—Cl395.36 (5)N1—C3—C6107.66 (19)
Cl1—Ni1—Cl392.33 (2)N1—C3—H31110.2
Cl2—Ni1—Cl393.14 (2)C6—C3—H31110.2
Ni1—O1—H3125.5N1—C3—H32110.2
Ni1—O1—H4126.2C6—C3—H32110.2
H3—O1—H492.2H31—C3—H32108.5
Ni1—O2—H5131.6N2—C4—C1108.01 (18)
Ni1—O2—H6133.6N2—C4—H41110.1
H5—O2—H694.6C1—C4—H41110.1
Ni1—O3—H7112.0N2—C4—H42110.1
Ni1—O3—H8109.4C1—C4—H42110.1
H7—O3—H8120.2H41—C4—H42108.4
H9—O4—H1098.0N2—C5—C2107.77 (19)
C3—N1—C1109.3 (2)N2—C5—H51110.2
C3—N1—C2110.08 (19)C2—C5—H51110.2
C1—N1—C2109.50 (19)N2—C5—H52110.2
C3—N1—H1109.3C2—C5—H52110.2
C1—N1—H1109.3H51—C5—H52108.5
C2—N1—H1109.3N2—C6—C3108.6 (2)
C5—N2—C4109.7 (2)N2—C6—H61110.0
C5—N2—C6109.70 (18)C3—C6—H61110.0
C4—N2—C6109.29 (19)N2—C6—H62110.0
C5—N2—H2109.4C3—C6—H62110.0
C4—N2—H2109.4H61—C6—H62108.3
C6—N2—H2109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···Cl3i0.862.263.1231 (17)174
O1—H4···Cl40.942.143.0817 (18)179
O2—H5···Cl4ii0.822.333.1392 (18)168
O2—H6···O4iii0.742.082.815 (3)177
O3—H7···Cl4iv0.952.123.0623 (17)168
O3—H8···Cl3ii0.912.503.3833 (17)163
O4—H9···O31.022.103.036 (2)152
O4—H9···Cl21.022.823.5791 (18)132
O4—H10···O1iv0.872.012.836 (2)158
N1—H1···Cl20.932.213.056 (2)151
N2—H2···Cl1v0.932.323.110 (2)143
N2—H2···Cl3v0.932.753.399 (2)128
C1—H11···Cl4vi0.992.703.470 (3)135
C1—H12···Cl40.992.703.510 (2)140
C2—H22···Cl4vi0.992.803.693 (3)150
C3—H32···Cl1iv0.992.793.682 (3)151
C4—H41···Cl4vii0.992.633.537 (3)153
C6—H62···Cl2viii0.992.783.544 (3)135
C4—H42···Cl4vi0.992.863.591 (3)131
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y, z1/2; (vi) x+1/2, y+1/2, z; (vii) x1/2, y+1/2, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C6H14N2)[NiCl3(H2O)3]Cl·H2O
Mr386.77
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)6.7019 (1), 11.9573 (2), 18.0923 (4)
V3)1449.86 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.35 × 0.26 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.517, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
10211, 3303, 3224
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.15
No. of reflections3303
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.78
Absolute structureFlack (1983), 1395 Friedel pairs
Absolute structure parameter0.478 (12)

Computer programs: COLLECT (Nonius, 1999), COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and ATOMS (Shape software, 1999), SHELXL97.

Selected bond lengths (Å) top
Ni1—O12.0451 (17)Ni1—Cl12.4127 (6)
Ni1—O22.0453 (17)Ni1—Cl22.4178 (6)
Ni1—O32.0713 (16)Ni1—Cl32.4512 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···Cl3i0.862.263.1231 (17)174
O1—H4···Cl40.942.143.0817 (18)179
O2—H5···Cl4ii0.822.333.1392 (18)168
O2—H6···O4iii0.742.082.815 (3)177
O3—H7···Cl4iv0.952.123.0623 (17)168
O3—H8···Cl3ii0.912.503.3833 (17)163
O4—H9···O31.022.103.036 (2)152
O4—H9···Cl21.022.823.5791 (18)132
O4—H10···O1iv0.872.012.836 (2)158
N1—H1···Cl20.932.213.056 (2)151
N2—H2···Cl1v0.932.323.110 (2)143
N2—H2···Cl3v0.932.753.399 (2)128
C1—H11···Cl4vi0.992.703.470 (3)135
C1—H12···Cl40.992.703.510 (2)140
C2—H22···Cl4vi0.992.803.693 (3)150
C3—H32···Cl1iv0.992.793.682 (3)151
C4—H41···Cl4vii0.992.633.537 (3)153
C6—H62···Cl2viii0.992.783.544 (3)135
C4—H42···Cl4vi0.992.863.591 (3)131
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y, z1/2; (vi) x+1/2, y+1/2, z; (vii) x1/2, y+1/2, z; (viii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds