Download citation
Download citation
link to html
Tripraseodymium molybdenum heptaoxide, Pr3MoO7, is isostructural with La3MoO7. Its crystal structure consists of chains of corner-linked MoO6 octahedra that are parallel with the b axis and separated from each other by seven-coordinate Pr-O polyhedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001892/br6077sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001892/br6077Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Mo-O) = 0.004 Å
  • R factor = 0.029
  • wR factor = 0.067
  • Data-to-parameter ratio = 33.1

checkCIF results

No syntax errors found


Amber Alert Alert Level B:
PLAT_111 Alert B ADDSYM Detects (Pseudo) Centre of Symmetry ... 81 Perc Fit PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. b PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. n PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. m PLAT_113 Alert B ADDSYM Suggests Possible Pseudo/New Spacegroup Pnma
Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.490 From the CIF: _refine_ls_abs_structure_Flack_su 0.030 Alert C Flack test results are ambiguous. PLAT_741 Alert C Bond Calc 3.7752(3), Rep 3.77520 .... Missing s.u. PR3 -PR3 1.555 2.565 PLAT_741 Alert C Bond Calc 3.7752(3), Rep 3.77520 .... Missing s.u. PR3 -PR3 1.555 2.465 General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.189 Tmax scaled 0.267 Tmin scaled 0.165 REFLT_03 From the CIF: _diffrn_reflns_theta_max 37.79 From the CIF: _reflns_number_total 3345 Count of symmetry unique reflns 1923 Completeness (_total/calc) 173.95% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1422 Fraction of Friedel pairs measured 0.739 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
5 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The Ln3MO7 compounds, where M is a pentavalent 4 d or 5 d transition element such as Nb, Mo, Ru, Ir, Os or Ta, and Ln is a rare earth, present an ordered double-fluorite structure and crystallize in various orthorhombic space groups, such as Pnma, Cmcm, C2221 or P212121. The main structural feature of the Ln3MoO7 compounds is the occurrence of zigzag chains of trans-corner-sharing MO6 octahedra that are separated by seven or eight-coordinate Ln–O polyhedra. Because of this quasi-one-dimensionality, La3RuO7, La3OsO7 (Lam et al., 2002), Ln3OsO7 (Ln = Pr, Nd, Sm; Plaisier et al., 2002), La3MoO7 (Greedan et al., 1997), Ln3RuO7 (Ln = Sm, Eu; Harada & Hinatsu, 2001) and Pr3MO7 (M = Nb, Ta; Vente et al., 1994) have been extensively studied for their physical properties.

We present here the crystal structure of Pr3MoO7. This compound was first synthesized as a powder sample by Prévost-Czeskleba (1987) and found to crystallize in the orthorhombic space group Cmcm as Nd3NbO7 (Rossel, 1979).

Our investigation on a single-crystal indicates that Pr3MoO7 crystallizes in the space group P212121 and is isostructural with La3MoO7 (Greedan et al., 1997). Perspective views of Pr3MoO7 along the b and c axes are shown in Figs. 1 and 2, respectively. The Mo—O distances within the MoO6 octahedra range from 1.854 (4) to 2.088 (5) Å [1.861 (3)–2.098 (4) Å in La3MoO7], with an average value of 1.974 Å compared to 1.981 Å in La3MoO7. The three crystallographically independent Pr3+ ions are each surrounded by seven O atoms. The oxygen environment of Pr1 can be viewed as a highly distorted cube, with one apex missing and those of Pr2 and Pr3 as distorted pentagonal bipyramids. The Pr—O distances are in the ranges 2.382 (4)–2.690 (5), 2.302 (3)–2.658 (3) and 2.280 (4)–2.581 (3) Å for the Pr1, Pr2 and Pr3 sites, respectively. As mentioned in the Experimental, the structure presents a Pbnm pseudosymmetry. The non-centrosymmetric nature of the structure arises probably from the Pr1 ion that does not reside at an inversion center as revealed by the refinement made in the space group Pbnm.

Experimental top

Single crystals of Pr3MoO7 were prepared from a stoichiometric amount of Pr6O11, MoO3 and Mo. The initial mixture (ca 5 g) was cold-pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of 300 K h−1 to 1973 K, held at this temperature for 10 min, then cooled at a rate of 100 K h−1 to 1373 K and finally furnace-cooled.

Refinement top

Systematic absences were only consistent with the acentric space group P212121. The atomic coordinates of La, Mo and O from La3MoO7 (Greedan et al., 1997) were used as starting positions in the first stages of the refinement in the present study. Attempts to refine the structure in the space group Pbnm, as suggested by PLATON (Spek, 1998), were unsuccessful and led to an R factor of about 0.10. Refinement of the Flack (1983) parameter gave a value of 0.49 (3), indicating that the crystal studied is a racemic twin.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND(Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of Pr3MoO7 along the b axis. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2] Fig. 2. Perspective view of Pr3MoO7 along the c axis.
Triprasepdymium molybdenum heptaoxide top
Crystal data top
Pr3MoO7F(000) = 1100
Mr = 630.67Dx = 6.701 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 11425 reflections
a = 7.5087 (1) Åθ = 1–37.8°
b = 7.6412 (2) ŵ = 24.91 mm1
c = 10.8952 (2) ÅT = 293 K
V = 625.12 (2) Å3Irregular block, black
Z = 40.09 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3345 independent reflections
Radiation source: fine-focus sealed tube3222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ scans (κ = 0) + additional ω scansθmax = 37.8°, θmin = 3.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.139, Tmax = 0.225k = 1312
16521 measured reflectionsl = 1618
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0091P)2 + 7.1924P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.029Δρmax = 4.07 e Å3
wR(F2) = 0.067Δρmin = 4.05 e Å3
S = 1.05Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3345 reflectionsExtinction coefficient: 0.0110 (3)
101 parametersAbsolute structure: Flack (1983)
0 restraintsAbsolute structure parameter: 0.49 (3)
Primary atom site location: isomorphous structure methods
Crystal data top
Pr3MoO7V = 625.12 (2) Å3
Mr = 630.67Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5087 (1) ŵ = 24.91 mm1
b = 7.6412 (2) ÅT = 293 K
c = 10.8952 (2) Å0.09 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3345 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3222 reflections with I > 2σ(I)
Tmin = 0.139, Tmax = 0.225Rint = 0.058
16521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.067Δρmax = 4.07 e Å3
S = 1.05Δρmin = 4.05 e Å3
3345 reflectionsAbsolute structure: Flack (1983)
101 parametersAbsolute structure parameter: 0.49 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo0.49773 (5)1.00093 (5)0.74955 (5)0.00537 (7)
Pr10.98074 (4)1.00637 (3)0.75374 (3)0.01071 (7)
Pr20.70257 (3)0.75417 (4)0.53386 (2)0.00700 (6)
Pr30.69200 (3)0.74788 (4)0.01812 (2)0.00686 (6)
O11.2042 (7)1.0298 (5)1.3685 (4)0.0126 (8)
O21.1372 (7)1.0505 (5)1.1117 (4)0.0161 (9)
O30.9590 (5)0.7487 (7)0.1179 (3)0.0092 (5)
O40.7888 (7)0.9639 (5)0.1292 (4)0.0119 (8)
O50.5707 (5)0.7473 (4)0.2398 (3)0.0095 (5)
O60.8275 (7)0.9616 (5)0.3754 (4)0.0116 (8)
O70.9904 (5)0.7577 (6)0.6184 (3)0.0088 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo0.00628 (14)0.00418 (14)0.00564 (13)0.00035 (10)0.00025 (8)0.00016 (11)
Pr10.01858 (13)0.00594 (10)0.00763 (10)0.00259 (9)0.00359 (9)0.00055 (8)
Pr20.00728 (10)0.00670 (11)0.00702 (9)0.00024 (11)0.00112 (7)0.00025 (9)
Pr30.00684 (10)0.00639 (11)0.00736 (9)0.00004 (11)0.00108 (7)0.00012 (9)
O10.015 (2)0.0111 (16)0.0122 (15)0.0014 (15)0.0070 (16)0.0011 (13)
O20.027 (3)0.0101 (16)0.0113 (16)0.0038 (15)0.0107 (16)0.0008 (13)
O30.0061 (13)0.0118 (15)0.0099 (12)0.0009 (15)0.0013 (11)0.0003 (14)
O40.017 (2)0.0078 (15)0.0107 (14)0.0015 (14)0.0037 (16)0.0005 (12)
O50.0112 (13)0.0049 (12)0.0124 (12)0.0004 (11)0.0004 (11)0.0001 (16)
O60.016 (2)0.0078 (15)0.0112 (15)0.0014 (13)0.0047 (14)0.0016 (12)
O70.0086 (15)0.0109 (15)0.0070 (12)0.0038 (15)0.0002 (9)0.0013 (14)
Geometric parameters (Å, º) top
Mo—O2i1.854 (4)Pr2—O7x2.302 (3)
Mo—O6ii1.920 (5)Pr2—O72.349 (3)
Mo—O5iii1.954 (3)Pr2—O4ii2.392 (4)
Mo—O1i2.008 (5)Pr2—O1xi2.416 (4)
Mo—O5iv2.018 (3)Pr2—O62.524 (4)
Mo—O4ii2.088 (5)Pr2—O2xii2.527 (4)
Mo—Pr23.3828 (6)Pr2—O5iv2.658 (3)
Mo—Pr2v3.4021 (5)Pr2—Moxiii3.4021 (5)
Mo—Pr3iii3.4566 (6)Pr2—Pr1i3.8154 (4)
Mo—Pr3iv3.5034 (6)Pr2—Pr1xii3.8203 (4)
Mo—Pr13.6273 (4)Pr3—O32.280 (4)
Pr1—O7vi2.382 (4)Pr3—O3xiv2.293 (4)
Pr1—O72.406 (4)Pr3—O42.414 (4)
Pr1—O3vii2.414 (5)Pr3—O1xii2.458 (4)
Pr1—O3iv2.420 (5)Pr3—O6i2.509 (4)
Pr1—O4ii2.447 (5)Pr3—O2x2.531 (4)
Pr1—O6ii2.678 (5)Pr3—O52.581 (3)
Pr1—O1viii2.690 (5)Pr3—Moxv3.4566 (6)
Pr1—Pr23.7169 (4)Pr3—Moxvi3.5034 (6)
Pr1—Pr3ii3.7393 (4)Pr3—Pr1i3.7393 (4)
Pr1—Pr2ii3.8154 (4)Pr3—Pr3xvii3.7752
Pr1—Pr3ix3.8194 (4)Pr3—Pr3xiv3.7752
O2i—Mo—O6ii169.7 (2)O7—Pr2—O1xi80.39 (16)
O2i—Mo—O5iii90.94 (17)O4ii—Pr2—O1xi128.12 (12)
O6ii—Mo—O5iii94.31 (16)O7x—Pr2—O677.82 (15)
O2i—Mo—O1i94.9 (2)O7—Pr2—O685.36 (15)
O6ii—Mo—O1i94.2 (2)O4ii—Pr2—O673.82 (13)
O5iii—Mo—O1i87.10 (16)O1xi—Pr2—O6149.65 (13)
O2i—Mo—O5iv89.50 (16)O7x—Pr2—O2xii81.55 (16)
O6ii—Mo—O5iv85.20 (16)O7—Pr2—O2xii79.35 (16)
O5iii—Mo—O5iv179.46 (6)O4ii—Pr2—O2xii144.50 (17)
O1i—Mo—O5iv93.18 (15)O1xi—Pr2—O2xii73.79 (14)
O2i—Mo—O4ii86.5 (2)O6—Pr2—O2xii77.32 (13)
O6ii—Mo—O4ii84.52 (18)O7x—Pr2—O5iv114.20 (12)
O5iii—Mo—O4ii92.49 (15)O7—Pr2—O5iv88.81 (11)
O1i—Mo—O4ii178.6 (2)O4ii—Pr2—O5iv67.99 (12)
O5iv—Mo—O4ii87.22 (15)O1xi—Pr2—O5iv64.89 (12)
O7vi—Pr1—O7172.81 (4)O6—Pr2—O5iv141.76 (11)
O7vi—Pr1—O3vii73.92 (12)O2xii—Pr2—O5iv138.38 (12)
O7—Pr1—O3vii102.97 (15)O3—Pr3—O3xiv168.18 (11)
O7vi—Pr1—O3iv108.90 (15)O3—Pr3—O492.88 (16)
O7—Pr1—O3iv73.38 (12)O3xiv—Pr3—O478.02 (16)
O3vii—Pr1—O3iv172.36 (9)O3—Pr3—O1xii92.25 (16)
O7vi—Pr1—O4ii108.95 (12)O3xiv—Pr3—O1xii79.70 (15)
O7—Pr1—O4ii76.01 (13)O4—Pr3—O1xii85.83 (12)
O3vii—Pr1—O4ii75.16 (13)O3—Pr3—O6i80.11 (17)
O3iv—Pr1—O4ii109.88 (13)O3xiv—Pr3—O6i104.14 (17)
O7vi—Pr1—O6ii73.48 (12)O4—Pr3—O6i73.74 (13)
O7—Pr1—O6ii113.66 (13)O1xii—Pr3—O6i157.67 (13)
O3vii—Pr1—O6ii113.30 (13)O3—Pr3—O2x87.33 (17)
O3iv—Pr1—O6ii74.33 (13)O3xiv—Pr3—O2x98.42 (17)
O4ii—Pr1—O6ii63.35 (13)O4—Pr3—O2x158.83 (13)
O7vi—Pr1—O1viii74.38 (13)O1xii—Pr3—O2x73.01 (13)
O7—Pr1—O1viii100.22 (12)O6i—Pr3—O2x126.96 (12)
O3vii—Pr1—O1viii101.47 (12)O3—Pr3—O582.20 (11)
O3iv—Pr1—O1viii72.98 (12)O3xiv—Pr3—O5109.59 (12)
O4ii—Pr1—O1viii174.02 (15)O4—Pr3—O5136.84 (12)
O6ii—Pr1—O1viii122.63 (14)O1xii—Pr3—O5136.98 (12)
O7x—Pr2—O7156.88 (10)O6i—Pr3—O563.16 (12)
O7x—Pr2—O4ii111.54 (16)O2x—Pr3—O564.16 (12)
O7—Pr2—O4ii78.14 (17)Moxv—O5—Moxvi148.3 (2)
O7x—Pr2—O1xi106.58 (16)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+3/2, y+2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+2, y+1/2, z+3/2; (vii) x+2, y+1/2, z+1/2; (viii) x+5/2, y+2, z1/2; (ix) x+1/2, y+3/2, z+1; (x) x1/2, y+3/2, z+1; (xi) x1/2, y+3/2, z+2; (xii) x+2, y1/2, z+3/2; (xiii) x+1, y1/2, z+3/2; (xiv) x1/2, y+3/2, z; (xv) x+1, y1/2, z+1/2; (xvi) x, y, z1; (xvii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaPr3MoO7
Mr630.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.5087 (1), 7.6412 (2), 10.8952 (2)
V3)625.12 (2)
Z4
Radiation typeMo Kα
µ (mm1)24.91
Crystal size (mm)0.09 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.139, 0.225
No. of measured, independent and
observed [I > 2σ(I)] reflections
16521, 3345, 3222
Rint0.058
(sin θ/λ)max1)0.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.05
No. of reflections3345
No. of parameters101
Δρmax, Δρmin (e Å3)4.07, 4.05
Absolute structureFlack (1983)
Absolute structure parameter0.49 (3)

Computer programs: COLLECT (Nonius, 1998), COLLECT, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND(Bergerhoff, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Mo—O2i1.854 (4)Pr2—O72.349 (3)
Mo—O6ii1.920 (5)Pr2—O4ii2.392 (4)
Mo—O5iii1.954 (3)Pr2—O1ix2.416 (4)
Mo—O1i2.008 (5)Pr2—O62.524 (4)
Mo—O5iv2.018 (3)Pr2—O2x2.527 (4)
Mo—O4ii2.088 (5)Pr2—O5iv2.658 (3)
Pr1—O7v2.382 (4)Pr3—O32.280 (4)
Pr1—O72.406 (4)Pr3—O3xi2.293 (4)
Pr1—O3vi2.414 (5)Pr3—O42.414 (4)
Pr1—O3iv2.420 (5)Pr3—O1x2.458 (4)
Pr1—O4ii2.447 (5)Pr3—O6i2.509 (4)
Pr1—O6ii2.678 (5)Pr3—O2viii2.531 (4)
Pr1—O1vii2.690 (5)Pr3—O52.581 (3)
Pr2—O7viii2.302 (3)
Moxii—O5—Moxiii148.3 (2)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+3/2, y+2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y, z+1; (v) x+2, y+1/2, z+3/2; (vi) x+2, y+1/2, z+1/2; (vii) x+5/2, y+2, z1/2; (viii) x1/2, y+3/2, z+1; (ix) x1/2, y+3/2, z+2; (x) x+2, y1/2, z+3/2; (xi) x1/2, y+3/2, z; (xii) x+1, y1/2, z+1/2; (xiii) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds