Download citation
Download citation
link to html
Crystals of the title compound, (NH4)4[H6NiMo6O24]·4H2O containing the well known B-type Ander­son-Evans heteropolyoxometalate, were obtained by recrystallization of powder (NH4)4[H6NiMo6O24nH2O. The anion has the Ni atom at an inversion center and has close to \overline 3m symmetry, with Ni-O bond lengths in the range 2.046 (5)-2.052 (6), Mo-O bond lengths in the ranges 1.701 (6)-1.720 (6), 1.932 (6)-1.954 (7) and 2.216 (6)-2.258 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801021109/br6038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801021109/br6038Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](Ni-O) = 0.006 Å
  • H-atom completeness 1%
  • R factor = 0.053
  • wR factor = 0.137
  • Data-to-parameter ratio = 18.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:H30 Mo6 N4 Ni1 O28 Atom count from the _atom_site data: Mo6 N4 Ni1 O28 CELLZ_01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum H30 Mo6 N4 Ni O28 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff H 60.00 0.00 60.00 Mo 12.00 12.00 0.00 N 8.00 8.00 0.00 Ni 2.00 2.00 0.00 O 56.00 56.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional? CHEMW_03 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_weight 1168.63 TEST: Calculate formula weight from _atom_site_* atom mass num sum Ni 58.69 1.00 58.69 Mo 95.94 6.00 575.64 O 16.00 28.00 447.97 H 1.01 0.00 0.00 N 14.01 4.00 56.03 Calculated formula weight 1138.33 The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01

Comment top

The B-type Anderson-Evans structure heteropolyoxoanions, [H6Xn-Mo6O24](6-n)- (X: Co2+, Co3+, Ni2+, Fe3+) (Anderson, 1937; Tsigdinos, 1978) do not usually form crystals suitable for structure determination. The reason is that the effective packing is disturbed by six undissociated H atoms bound to O atoms in XO6. As a result, they form a plate-like powder. But, the simple crystals suitable for the structure determination, such as K3[H6CoMo6O24].14H2O, were obtained by careful recrystallization. The title crystals were also obtained by recrystallization, as reported in the early part of last century (Hall, 1907) However, an X-ray study has not been reported. Fig. 1 shows the structure of the [H6Ni6Mo6O24]4- polyanion. The anion has an inversion center and is close to having D3 d (3 m) symmetry. All atoms, except for the central NiII atom, are located on the general position of the space group. The Ni atom lies on the inversion center of the polyanion. The labelling of the O atoms in the polyanion is the same as in the previous report (Lee & Joo, 2000). Six non-acidic H atoms in the [H6NiMo6O24]4- polyanion are bound to six central Oc atoms surrounding the NiII atom, as they are in the Anderson–Evans structure heteropolyoxoanions containing Cu2+ (Ito et al., 1989), Al3+ (Lee et al., 1991), Co3+ (Nolan et al., 1998; Lee et al., 2001), Cr3+ (Perloff, 1970) and Rh3+ (Ozawa et al., 1991). The average X—O distances (and ionic radii: Shannon, 1976) in the [H6Xn+Mo6O24](8-n)- polyanion are 1.90 (Al3+, 67.5 pm), 1.906 (Co3+, 68.5 pm), 1.975 (Cr3+, 75.5 pm), 2.021 (Rh3+, 80.5 pm), 2.06 (Cu2+, 87 pm) and 2.049 (Ni2+, 83 pm)Å. These values showed that the distances increased according to ionic radii, respectively. The Mo—Ob and the Mo—Ot distances were not affected by the characters of heteroatoms.

Water molecules and ammonium ions were distinguished from the hydrogen bonding and interatomic distances. Two ammonium ions cannot be nearer to each other than 3.7 Å (Siemons & Templeton 1954). In the first instance, the Ow1 and N1 atoms are decided by these results.

The packing diagram of a unit cell is shown in Fig. 2. A list of all hydrogen-bond distances within 2.95 Å is given in Table 2. The H atom of Oc2 does not contribute to the inter-anion hydrogen bonding, but it forms a strong hydrogen bond with Ow1. All water molecules and ammonium ions contribute to hydrogen bonding with each other or with the O atoms in the polyanion. Except for the two direct inter-anion hydrogen bonds, Oc1—Ot8 and Oc3—Ot9, the other hydrogen bonds between the anions occur indirectly through H2O or NH4. The title crystals were stabilized by the this hydrogen bonding.

Experimental top

The title compound was obtained by recrystallization of the powder (NH4)4[H6CoMo6O24].nH2O at pH 5.35. The powder was obtained by the reaction of (NH4)4[H6CoMo6O24]·4H2O with Ni(NO3). Elemental analysis, calculated: N 4.79 H 2.57%; found: N 4.78 H 2.59%.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97-2 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97-2 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The polyanion structure in (NH4)4[H6Mo6O24]·4H2O. H atoms are not shown. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The unit-cell packing with hydrogen bonding.
(I) top
Crystal data top
(NH4)4[H6NiMo6O24]·4H2OF(000) = 1124
Mr = 1168.63Dx = 2.706 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71069 Å
a = 11.994 (3) ÅCell parameters from 27 reflections
b = 11.131 (2) Åθ = 9.5–10.5°
c = 11.384 (9) ŵ = 3.29 mm1
β = 109.31 (8)°T = 298 K
V = 1434.3 (12) Å3Octagonal plate, pale blue
Z = 20.25 × 0.19 × 0.10 mm
Data collection top
Stoe STADI4
diffractometer
2448 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.6°, θmin = 1.9°
ω/2–θ scansh = 1514
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 014
Tmin = 0.542, Tmax = 0.849l = 014
3290 measured reflections3 standard reflections every 60 min
3290 independent reflections intensity decay: 4.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053H-atom parameters not refined
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0508P)2 + 13.3268P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3290 reflectionsΔρmax = 1.11 e Å3
178 parametersΔρmin = 1.33 e Å3
0 restraints
Crystal data top
(NH4)4[H6NiMo6O24]·4H2OV = 1434.3 (12) Å3
Mr = 1168.63Z = 2
Monoclinic, P21/aMo Kα radiation
a = 11.994 (3) ŵ = 3.29 mm1
b = 11.131 (2) ÅT = 298 K
c = 11.384 (9) Å0.25 × 0.19 × 0.10 mm
β = 109.31 (8)°
Data collection top
Stoe STADI4
diffractometer
2448 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
Rint = 0.000
Tmin = 0.542, Tmax = 0.8493 standard reflections every 60 min
3290 measured reflections intensity decay: 4.9%
3290 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.137H-atom parameters not refined
S = 1.13 w = 1/[σ2(Fo2) + (0.0508P)2 + 13.3268P]
where P = (Fo2 + 2Fc2)/3
3290 reflectionsΔρmax = 1.11 e Å3
178 parametersΔρmin = 1.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.50000.50000.0179 (3)
Mo10.14146 (6)0.73868 (7)0.34545 (7)0.02361 (19)
Mo20.04799 (6)0.73730 (6)0.65370 (7)0.02200 (19)
Mo30.08826 (6)0.49667 (7)0.80890 (7)0.02484 (19)
Oc10.0094 (4)0.6117 (5)0.3602 (5)0.0195 (11)
Oc20.1353 (5)0.6123 (5)0.4992 (5)0.0186 (11)
Oc30.0932 (5)0.6076 (5)0.6451 (5)0.0198 (11)
Ob40.0367 (5)0.8065 (5)0.5011 (6)0.0260 (13)
Ob50.0484 (5)0.6007 (5)0.7610 (6)0.0261 (13)
Ob60.2014 (5)0.3958 (6)0.7650 (6)0.0280 (13)
Ot70.0983 (6)0.8352 (6)0.2516 (7)0.0396 (17)
Ot80.2758 (6)0.7938 (6)0.3442 (7)0.0372 (16)
Ot90.1786 (5)0.7961 (6)0.6546 (6)0.0314 (14)
Ot100.0573 (6)0.8287 (6)0.7522 (6)0.0334 (15)
Ot110.1940 (6)0.5839 (7)0.9124 (6)0.0401 (17)
Ot120.0416 (7)0.4040 (6)0.9029 (7)0.0396 (16)
Ow20.0669 (10)0.1747 (9)1.0224 (9)0.076 (3)
Ow10.3563 (6)0.4568 (7)0.5110 (10)0.062 (3)
N20.2312 (7)0.5287 (8)0.8337 (8)0.0376 (19)
N10.4254 (8)0.4702 (9)0.8146 (10)0.047 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0194 (6)0.0129 (6)0.0244 (7)0.0014 (5)0.0113 (5)0.0006 (6)
Mo10.0245 (4)0.0174 (3)0.0312 (4)0.0046 (3)0.0122 (3)0.0039 (3)
Mo20.0225 (3)0.0161 (3)0.0305 (4)0.0013 (3)0.0129 (3)0.0024 (3)
Mo30.0275 (4)0.0235 (4)0.0247 (4)0.0022 (3)0.0102 (3)0.0006 (3)
Oc10.018 (3)0.017 (3)0.026 (3)0.001 (2)0.010 (2)0.002 (2)
Oc20.020 (3)0.013 (3)0.025 (3)0.001 (2)0.010 (2)0.001 (2)
Oc30.020 (3)0.018 (3)0.024 (3)0.002 (2)0.010 (2)0.004 (2)
Ob40.031 (3)0.016 (3)0.034 (3)0.001 (2)0.015 (3)0.001 (3)
Ob50.028 (3)0.024 (3)0.034 (3)0.005 (2)0.020 (3)0.000 (3)
Ob60.026 (3)0.027 (3)0.032 (3)0.006 (2)0.010 (3)0.002 (3)
Ot70.054 (4)0.031 (4)0.039 (4)0.007 (3)0.023 (3)0.011 (3)
Ot80.033 (3)0.038 (4)0.045 (4)0.011 (3)0.019 (3)0.003 (3)
Ot90.029 (3)0.033 (3)0.036 (4)0.008 (3)0.015 (3)0.001 (3)
Ot100.034 (3)0.028 (3)0.039 (4)0.003 (3)0.013 (3)0.008 (3)
Ot110.040 (4)0.041 (4)0.035 (4)0.001 (3)0.006 (3)0.006 (3)
Ot120.056 (4)0.033 (4)0.036 (4)0.007 (3)0.024 (3)0.009 (3)
Ow20.123 (9)0.051 (5)0.060 (6)0.012 (6)0.036 (6)0.002 (5)
Ow10.038 (4)0.024 (4)0.142 (9)0.001 (3)0.053 (5)0.005 (5)
N20.034 (4)0.041 (5)0.041 (5)0.005 (4)0.016 (4)0.003 (4)
N10.044 (5)0.039 (5)0.064 (6)0.002 (4)0.023 (5)0.007 (5)
Geometric parameters (Å, º) top
Ni—Oc2i2.046 (5)Mo2—Ot101.717 (7)
Ni—Oc22.046 (5)Mo2—Ob41.946 (6)
Ni—Oc3i2.047 (6)Mo2—Ob51.952 (6)
Ni—Oc32.047 (6)Mo2—Oc22.216 (6)
Ni—Oc12.052 (6)Mo2—Oc32.252 (5)
Ni—Oc1i2.052 (6)Mo3—Ot121.708 (7)
Mo1—Ot71.712 (7)Mo3—Ot111.718 (7)
Mo1—Ot81.720 (6)Mo3—Ob51.932 (6)
Mo1—Ob6i1.935 (6)Mo3—Ob61.949 (6)
Mo1—Ob41.954 (7)Mo3—Oc1i2.245 (6)
Mo1—Oc22.228 (6)Mo3—Oc32.254 (6)
Mo1—Oc12.258 (5)Ow1—N13.281 (15)
Mo2—Ot91.701 (6)
Oc2i—Ni—Oc2180.000 (1)Ob5—Mo2—Oc284.8 (2)
Oc2—Ni—Oc3i97.6 (2)Ot9—Mo2—Oc3162.6 (3)
Oc2—Ni—Oc382.4 (2)Ot10—Mo2—Oc390.4 (3)
Oc3i—Ni—Oc3180.000 (1)Ob4—Mo2—Oc386.5 (2)
Oc2i—Ni—Oc197.3 (2)Ob5—Mo2—Oc371.7 (2)
Oc2—Ni—Oc182.7 (2)Oc2—Mo2—Oc374.2 (2)
Oc3i—Ni—Oc183.4 (2)Ot12—Mo3—Ot11103.4 (4)
Oc3—Ni—Oc196.6 (2)Ot12—Mo3—Ob596.6 (3)
Oc1—Ni—Oc1i180.000 (1)Ot11—Mo3—Ob5102.7 (3)
Ot7—Mo1—Ot8104.3 (3)Ot12—Mo3—Ob6102.3 (3)
Ot7—Mo1—Ob6i101.8 (3)Ot11—Mo3—Ob694.7 (3)
Ot8—Mo1—Ob6i97.2 (3)Ob5—Mo3—Ob6150.5 (3)
Ot7—Mo1—Ob495.0 (3)Ot12—Mo3—Oc1i91.5 (3)
Ot8—Mo1—Ob4100.9 (3)Ot11—Mo3—Oc1i161.6 (3)
Ob6i—Mo1—Ob4151.4 (2)Ob5—Mo3—Oc1i85.8 (2)
Ot7—Mo1—Oc2161.5 (3)Ob6—Mo3—Oc1i71.4 (2)
Ot8—Mo1—Oc291.1 (3)Ot12—Mo3—Oc3162.3 (3)
Ob6i—Mo1—Oc286.0 (2)Ot11—Mo3—Oc392.4 (3)
Ob4—Mo1—Oc271.8 (2)Ob5—Mo3—Oc372.0 (2)
Ot7—Mo1—Oc192.2 (3)Ob6—Mo3—Oc383.8 (2)
Ot8—Mo1—Oc1161.7 (3)Oc1i—Mo3—Oc374.6 (2)
Ob6i—Mo1—Oc171.4 (2)Ni—Oc1—Mo3i101.1 (2)
Ob4—Mo1—Oc185.1 (2)Ni—Oc1—Mo1100.9 (2)
Oc2—Mo1—Oc174.3 (2)Mo3i—Oc1—Mo195.4 (2)
Ot9—Mo2—Ot10104.4 (3)Ni—Oc2—Mo2102.4 (2)
Ot9—Mo2—Ob4100.9 (3)Ni—Oc2—Mo1102.1 (2)
Ot10—Mo2—Ob495.5 (3)Mo2—Oc2—Mo196.4 (2)
Ot9—Mo2—Ob595.9 (3)Ni—Oc3—Mo2101.1 (2)
Ot10—Mo2—Ob5101.9 (3)Ni—Oc3—Mo3100.9 (2)
Ob4—Mo2—Ob5152.0 (2)Mo2—Oc3—Mo395.1 (2)
Ot9—Mo2—Oc293.0 (3)Mo2—Ob4—Mo1116.3 (3)
Ot10—Mo2—Oc2160.5 (3)Mo3—Ob5—Mo2117.8 (3)
Ob4—Mo2—Oc272.2 (2)Mo1i—Ob6—Mo3118.1 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å) top
D—H···AD···A
Oc1···Ot8ii2.844 (8)
Oc3···Ot9ii2.908 (8)
Ow1···Oc2i2.726 (8)
Ow1···Ob4iii2.774 (9)
Ow2···Ot122.86 (1)
Ow2···Ot11iv2.90 (1)
Ow2···N1v2.90 (2)
Ow2···N1iv2.92 (1)
N1···Ob62.69 (1)
N1···Ot7iii2.86 (1)
N1···Ow2vi2.90 (2)
N1···Ow2vii2.92 (2)
N2···Ob52.71 (1)
N2···Ot10viii2.87 (1)
N2···Ot7ix2.91 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1; (iv) x+1/2, y1/2, z+2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y+1/2, z+2; (viii) x1/2, y+3/2, z; (ix) x1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formula(NH4)4[H6NiMo6O24]·4H2O
Mr1168.63
Crystal system, space groupMonoclinic, P21/a
Temperature (K)298
a, b, c (Å)11.994 (3), 11.131 (2), 11.384 (9)
β (°) 109.31 (8)
V3)1434.3 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.25 × 0.19 × 0.10
Data collection
DiffractometerStoe STADI4
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.542, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
3290, 3290, 2448
Rint0.000
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.137, 1.13
No. of reflections3290
No. of parameters178
H-atom treatmentH-atom parameters not refined
w = 1/[σ2(Fo2) + (0.0508P)2 + 13.3268P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.11, 1.33

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97-2 (Sheldrick, 1997), SHELXL97-2 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Ni—Oc22.046 (5)Mo2—Ob41.946 (6)
Ni—Oc32.047 (6)Mo2—Ob51.952 (6)
Ni—Oc12.052 (6)Mo2—Oc22.216 (6)
Mo1—Ot71.712 (7)Mo2—Oc32.252 (5)
Mo1—Ot81.720 (6)Mo3—Ot121.708 (7)
Mo1—Ob6i1.935 (6)Mo3—Ot111.718 (7)
Mo1—Ob41.954 (7)Mo3—Ob51.932 (6)
Mo1—Oc22.228 (6)Mo3—Ob61.949 (6)
Mo1—Oc12.258 (5)Mo3—Oc1i2.245 (6)
Mo2—Ot91.701 (6)Mo3—Oc32.254 (6)
Mo2—Ot101.717 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD···A
Oc1···Ot8ii2.844 (8)
Oc3···Ot9ii2.908 (8)
Ow1···Oc2i2.726 (8)
Ow1···Ob4iii2.774 (9)
Ow2···Ot122.86 (1)
Ow2···Ot11iv2.90 (1)
Ow2···N1v2.90 (2)
Ow2···N1iv2.92 (1)
N1···Ob62.69 (1)
N1···Ot7iii2.86 (1)
N1···Ow2vi2.90 (2)
N1···Ow2vii2.92 (2)
N2···Ob52.71 (1)
N2···Ot10viii2.87 (1)
N2···Ot7ix2.91 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1; (iv) x+1/2, y1/2, z+2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y+1/2, z+2; (viii) x1/2, y+3/2, z; (ix) x1/2, y1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds