Download citation
Download citation
link to html
The title compound, barium palladium oxide, Ba68Pd32Ox, x \simeq 13.5 is a medium-sized cubic suboxide. Two of the four crystallographically independent Ba atoms form a network of face-sharing octahedra with O atoms occupying the central position of these octahedra, giving a network resembling the pyrochlore structure. Two of three O-atom positions are fully occupied and the third partially occupied. The remainder of the Ba atoms and the Pd atoms are distributed in another network residing in the channels of the network of face-sharing O-Ba6 octahedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010935/br6026sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010935/br6026Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.029
  • wR factor = 0.041
  • Data-to-parameter ratio = 15.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
CHEMS_01 Alert B The sum formula contains elements in the wrong order. Pd precedes O Sequence must be C, H, then alphabetical.
Yellow Alert Alert Level C:
PLAT_202 Alert C Isotropic non-H Atoms in Anion/Solvent = 2 PLAT_302 Alert C Anion/Solvent Disorder ....................... 4.00 Perc. PLAT_731 Alert C Bond Calc 4.4681(14), Rep 4.468(3) .... 2.14 s.u-Ratio BA3 -BA3 1.555 4.555 PLAT_731 Alert C Bond Calc 4.4681(14), Rep 4.468(3) .... 2.14 s.u-Ratio BA3 -BA3 1.555 2.555 General Notes
CELLZ_01 From the CIF: _cell_formula_units_Z 32 From the CIF: _chemical_formula_sum Ba2.125 Pd O0.422 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff Ba 68.00 68.00 0.00 Pd 32.00 32.00 0.00 O 13.50 13.44 0.06 Difference between formula and atom_site contents detected. ALERT: check formula stoichiometry or atom site occupancies. REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.86 From the CIF: _reflns_number_total 336 Count of symmetry unique reflns 289 Completeness (_total/calc) 116.26% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 47 Fraction of Friedel pairs measured 0.163 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

The title compound was synthesized as part of a search for intermetallic compounds for use as hydrogen storage materials. The compound is composed of a network of face sharing O–Ba6 octahedra with the residual Ba atoms and all Pd atoms located in the tunnels of the octahedra network. O atoms were assigned to model quite large residual densities in the centre of the octahedra. This network of O—Ba6 is closely related to the pyrochlore structure (Gaertner, 1930). Removing the O1 atom (Fig. 1) gives a good resemblance between the pyrochlore Nb—O6 octahedra and the network of O2—Ba26 octahedra in the title compound. Barium suboxides, with similar arrangements of O—Ba octahedra, have been observed earlier (Röhr, 1995). The main difference in the present compound are the slightly longer Ba—O and Ba—Ba distances. This may be due to partial occupation of the O-atom positions giving a weaker attraction but may also be an effect of the excess Ba and Pd in the structure. In addition to the network of O—Ba6 octahedra as shown in Fig. 2, one can construct a complementary network of tetrahedraly coordinated Ba3 around Ba4 with an extra tetrahedron of Pd1 around Ba4 connected to each other through squares of 2 × Ba3 and 2 × Pd2. This additional network is shown in Fig. 3. It must be emphasized that the only indication that the title compound contains oxygen is the much better fit of the diffraction data when the model includes O atoms. Removing the O atoms from the structure model gives a pure intermetallic compound with the composition Ba68Pd32. This is, however, probably not correct. The oxygen stoichiometry cannot be stated with particularly high accuracy as it is a result from refinement.

Experimental top

The compound was crystallized from a solid-state reaction between a mixture of BaH2 (Ba rods 99.9+%, Aldrich Chemical Company Inc.; heated under 50 bar of H2 pressure at 723 K for 4 h) and Pd (powder < 60 µm, claimed purity 99.9+%, Chempur) in a nominal molar ratio Ba:Pd = 2:1 mixed and heated (T 973 K) in an Al2O3 crucible in a stainless-steel reactor under a H2 pressure of 35 bar. All materials were handled in an argon-filled glove-box. The reason for using hydrogen was that the initial intention was to synthesize hydrides. The most probable sources of oxygen are either residual impurities in the glove-box atmosphere or a solid-state reaction with the crucible material (Al2O3). Assuming the conditions of Ellingham diagrams (Wulfsberg, 1987) to be true, one can imagine that the reduction of Al2O3 with Ba metal would be spontaneous at the synthesis temperature, thus a possible source of oxygen is the crucible material. Small single crystals were obtained from the solidified reaction product.

Refinement top

The O atoms in the center of barium octahedra were located from difference-density maps. Without the O atoms, residual densities of 12.2, 7.4 and 2.9 e Å-3 were located in the center of the Ba octahedra. Adding the O atoms further decreased the conventional R1 from 0.040 to 0.029. A l l O atoms were refined with a common isotropic displacement parameter and the occupancy of O3 were let free to refine. Adding hydrogen as central atoms to describe the residual intensities invariably led to negative displacement parameters and the only reasonable model that fitted the diffraction data was the one described with the oxygen atoms in the center of the octahedra. The corresponding refinement of the occupancy parameters of O1 and O2 did not yield any significant deviation from full occupancy, thus they were locked at full occupancy. The use of a common isotropic displacement parameter was found to be the model that gave the most stable refinement. No chemical analysis of the O content were done, thus the only indication of the presence of O atoms is the better fit to the structural data.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1988); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhof, 1996).

Figures top
[Figure 1] Fig. 1. Part of the network of O—Ba6 octahedra. The octahedra with O1 in its centre is blue and the ones with O3 in the centres are red. The Pd atoms are shown as yellow unconnected circles and the Ba atoms are shown with small grey circles at the apices of the octahedra. The surrounding of O2 is very similar to the surrounding of O1.
[Figure 2] Fig. 2. Slightly more than the unit-cell content with the network of O—Ba6 octahedra shown blue around O1, green around O2 and red around O3. Pd atoms are yellow and Ba grey. The Ba atoms that form the octahedra are shown with small circles.
[Figure 3] Fig. 3. The unit-cell content with the complementary network to the O–Ba6 network. The Ba atoms are shown as grey circles and Pd with yellow circles. The orientation of picture is equivalent to Fig. 2.
barium palladium oxide top
Crystal data top
Ba2.125PdO0.422Mo Kα radiation, λ = 0.71073 Å
Mr = 404.91Cell parameters from 32 reflections
Cubic, F43mθ = 15.0–19.2°
a = 15.878 (1) ŵ = 19.89 mm1
V = 4003.0 (4) Å3T = 293 K
Z = 32Prism, metallic light grey
F(000) = 53440.14 × 0.09 × 0.07 mm
Dx = 5.340 Mg m3
Data collection top
Stoe AED4
diffractometer
270 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 27.9°, θmin = 2.2°
ω/2θ scansh = 120
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
k = 120
Tmin = 0.060, Tmax = 0.259l = 120
1671 measured reflections3 standard reflections every 240 min
336 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.16Δρmax = 1.65 e Å3
336 reflectionsΔρmin = 1.32 e Å3
22 parametersAbsolute structure: Flack (1983), XXXX Friedel pairs
0 restraintsAbsolute structure parameter: 0.08 (11)
Crystal data top
Ba2.125PdO0.422Z = 32
Mr = 404.91Mo Kα radiation
Cubic, F43mµ = 19.89 mm1
a = 15.878 (1) ÅT = 293 K
V = 4003.0 (4) Å30.14 × 0.09 × 0.07 mm
Data collection top
Stoe AED4
diffractometer
270 reflections with I > 2σ(I)
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
Rint = 0.079
Tmin = 0.060, Tmax = 0.2593 standard reflections every 240 min
1671 measured reflections intensity decay: 1%
336 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.042Δρmax = 1.65 e Å3
S = 1.16Δρmin = 1.32 e Å3
336 reflectionsAbsolute structure: Flack (1983), XXXX Friedel pairs
22 parametersAbsolute structure parameter: 0.08 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.92634 (10)0.25000.25000.0160 (5)
Ba20.32977 (8)0.00000.00000.0153 (5)
Ba30.09949 (6)0.09949 (6)0.09949 (6)0.0128 (4)
Ba40.25000.25000.25000.0119 (7)
Pd10.35502 (11)0.35502 (11)0.35502 (11)0.0140 (5)
Pd20.89303 (10)0.89303 (10)0.89303 (10)0.0114 (6)
O10.75000.75000.75000.011 (5)*
O20.50000.50000.50000.011 (5)*
O30.879 (2)0.379 (2)0.121 (2)0.011 (5)*0.34 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0113 (9)0.0184 (6)0.0184 (6)0.0000.0000.0105 (7)
Ba20.0087 (8)0.0187 (5)0.0187 (5)0.0000.0000.0000 (10)
Ba30.0128 (4)0.0128 (4)0.0128 (4)0.0015 (5)0.0015 (5)0.0015 (5)
Ba40.0119 (7)0.0119 (7)0.0119 (7)0.0000.0000.000
Pd10.0140 (5)0.0140 (5)0.0140 (5)0.0032 (7)0.0032 (7)0.0032 (7)
Pd20.0114 (6)0.0114 (6)0.0114 (6)0.0014 (7)0.0014 (7)0.0014 (7)
Geometric parameters (Å, º) top
Ba1—O1i2.7999 (16)Ba3—Ba3xxv4.468 (3)
Ba1—O33.00 (4)Ba4—Pd12.888 (3)
Ba1—O3ii3.00 (4)Ba4—Pd1ii2.888 (3)
Ba1—Pd2iii3.255 (2)Ba4—Pd1xxvi2.888 (3)
Ba1—Pd2i3.255 (2)Ba4—Pd1xxvii2.888 (3)
Ba1—Ba1iv3.960 (2)Ba4—Ba3xxvii4.1393 (18)
Ba1—Ba1v3.960 (2)Ba4—Ba3xxvi4.1393 (18)
Ba1—Ba1vi3.960 (2)Ba4—Ba3ii4.1393 (18)
Ba1—Ba1vii3.960 (2)Pd1—Ba2xxviii3.280 (2)
Ba1—Ba2viii4.3277 (6)Pd1—Ba2xxix3.280 (2)
Ba1—Ba2ix4.3277 (6)Pd1—Ba2xxx3.280 (2)
Ba1—Ba2x4.3277 (6)Pd2—Ba1xxviii3.255 (2)
Ba2—O2i2.7029 (13)Pd2—Ba1xxx3.255 (2)
Ba2—O3xi2.82 (3)Pd2—Ba1xxix3.255 (2)
Ba2—O3xii2.82 (3)Pd2—Ba3xxxi3.2825 (17)
Ba2—Pd1ii3.280 (2)Pd2—Ba3xxxii3.2825 (17)
Ba2—Pd1i3.280 (2)Pd2—Ba3xxxiii3.2825 (17)
Ba2—Ba2xiii3.8225 (18)O1—Ba1xxxiv2.7999 (16)
Ba2—Ba2xiv3.8225 (18)O1—Ba1xxx2.7999 (16)
Ba2—Ba2vi3.8225 (18)O1—Ba1xxviii2.7999 (16)
Ba2—Ba2vii3.8225 (18)O1—Ba1xxix2.7999 (16)
Ba2—Ba3xv4.2849 (11)O1—Ba1xxxv2.7999 (16)
Ba2—Ba34.2849 (11)O1—Ba1xxxvi2.7999 (16)
Ba2—Ba1xvi4.3277 (6)O2—Ba2xxxvii2.7029 (13)
Ba3—Pd2xvii3.2825 (17)O2—Ba2xxviii2.7029 (13)
Ba3—Pd2xviii3.2825 (17)O2—Ba2xxxviii2.7029 (13)
Ba3—Pd2xix3.2825 (17)O2—Ba2xxix2.7029 (13)
Ba3—Ba44.1393 (18)O2—Ba2iv2.7029 (13)
Ba3—Ba2xx4.2849 (11)O2—Ba2xxx2.7029 (13)
Ba3—Ba2xxi4.2849 (11)O3—Ba2viii2.82 (3)
Ba3—Ba1xxii4.3567 (11)O3—Ba2xxxix2.82 (3)
Ba3—Ba1xxiii4.3567 (11)O3—Ba2x2.82 (3)
Ba3—Ba1xxiv4.3567 (11)O3—Ba1v3.00 (4)
Ba3—Ba3xv4.468 (3)O3—Ba1vi3.00 (4)
O1i—Ba1—O375.6 (8)Ba2—Ba3—Ba2xx119.556 (6)
O1i—Ba1—O3ii75.6 (8)Pd2xvii—Ba3—Ba2xxi67.311 (13)
O3—Ba1—O3ii151.3 (16)Pd2xviii—Ba3—Ba2xxi151.51 (7)
O1i—Ba1—Pd2iii80.65 (4)Pd2xix—Ba3—Ba2xxi67.311 (13)
O3—Ba1—Pd2iii87.69 (13)Ba4—Ba3—Ba2xxi86.16 (3)
O3ii—Ba1—Pd2iii87.69 (13)Ba2—Ba3—Ba2xxi119.556 (6)
O1i—Ba1—Pd2i80.65 (4)Ba2xx—Ba3—Ba2xxi119.556 (6)
O3—Ba1—Pd2i87.69 (13)Pd2xvii—Ba3—Ba1xxii123.422 (14)
O3ii—Ba1—Pd2i87.69 (13)Pd2xviii—Ba3—Ba1xxii123.422 (14)
Pd2iii—Ba1—Pd2i161.30 (9)Pd2xix—Ba3—Ba1xxii47.94 (4)
O1i—Ba1—Ba1iv45.0Ba4—Ba3—Ba1xxii74.39 (3)
O3—Ba1—Ba1iv108.0 (7)Ba2—Ba3—Ba1xxii60.099 (5)
O3ii—Ba1—Ba1iv48.7 (6)Ba2xx—Ba3—Ba1xxii160.55 (5)
Pd2iii—Ba1—Ba1iv52.54 (3)Ba2xxi—Ba3—Ba1xxii60.099 (5)
Pd2i—Ba1—Ba1iv112.24 (4)Pd2xvii—Ba3—Ba1xxiii123.422 (14)
O1i—Ba1—Ba1v45.0Pd2xviii—Ba3—Ba1xxiii47.94 (4)
O3—Ba1—Ba1v48.7 (6)Pd2xix—Ba3—Ba1xxiii123.422 (14)
O3ii—Ba1—Ba1v108.0 (7)Ba4—Ba3—Ba1xxiii74.39 (3)
Pd2iii—Ba1—Ba1v52.54 (3)Ba2—Ba3—Ba1xxiii60.099 (5)
Pd2i—Ba1—Ba1v112.24 (4)Ba2xx—Ba3—Ba1xxiii60.099 (5)
Ba1iv—Ba1—Ba1v60.0Ba2xxi—Ba3—Ba1xxiii160.55 (5)
O1i—Ba1—Ba1vi45.0Ba1xxii—Ba3—Ba1xxiii113.04 (2)
O3—Ba1—Ba1vi48.7 (6)Pd2xvii—Ba3—Ba1xxiv47.94 (4)
O3ii—Ba1—Ba1vi108.0 (7)Pd2xviii—Ba3—Ba1xxiv123.422 (14)
Pd2iii—Ba1—Ba1vi112.24 (4)Pd2xix—Ba3—Ba1xxiv123.422 (14)
Pd2i—Ba1—Ba1vi52.54 (3)Ba4—Ba3—Ba1xxiv74.39 (3)
Ba1iv—Ba1—Ba1vi90.0Ba2—Ba3—Ba1xxiv160.55 (5)
Ba1v—Ba1—Ba1vi60.0Ba2xx—Ba3—Ba1xxiv60.099 (5)
O1i—Ba1—Ba1vii45.0Ba2xxi—Ba3—Ba1xxiv60.099 (5)
O3—Ba1—Ba1vii108.0 (7)Ba1xxii—Ba3—Ba1xxiv113.04 (2)
O3ii—Ba1—Ba1vii48.7 (6)Ba1xxiii—Ba3—Ba1xxiv113.04 (2)
Pd2iii—Ba1—Ba1vii112.24 (4)Pd2xvii—Ba3—Ba3xv92.93 (5)
Pd2i—Ba1—Ba1vii52.54 (3)Pd2xviii—Ba3—Ba3xv47.11 (4)
Ba1iv—Ba1—Ba1vii60.0Pd2xix—Ba3—Ba3xv47.11 (4)
Ba1v—Ba1—Ba1vii90.0Ba4—Ba3—Ba3xv144.7
Ba1vi—Ba1—Ba1vii60.0Ba2—Ba3—Ba3xv58.58 (3)
O1i—Ba1—Ba2viii105.68 (2)Ba2xx—Ba3—Ba3xv110.04 (2)
O3—Ba1—Ba2viii40.4 (6)Ba2xxi—Ba3—Ba3xv110.04 (2)
O3ii—Ba1—Ba2viii153.62 (9)Ba1xxii—Ba3—Ba3xv86.66 (2)
Pd2iii—Ba1—Ba2viii118.664 (16)Ba1xxiii—Ba3—Ba3xv86.66 (2)
Pd2i—Ba1—Ba2viii66.93 (2)Ba1xxiv—Ba3—Ba3xv140.87 (3)
Ba1iv—Ba1—Ba2viii147.11 (2)Pd2xvii—Ba3—Ba3xxv47.11 (4)
Ba1v—Ba1—Ba2viii89.09 (2)Pd2xviii—Ba3—Ba3xxv47.11 (4)
Ba1vi—Ba1—Ba2viii62.776 (19)Pd2xix—Ba3—Ba3xxv92.93 (5)
Ba1vii—Ba1—Ba2viii113.456 (15)Ba4—Ba3—Ba3xxv144.7
O1i—Ba1—Ba2ix105.68 (2)Ba2—Ba3—Ba3xxv110.04 (2)
O3—Ba1—Ba2ix153.62 (9)Ba2xx—Ba3—Ba3xxv58.58 (3)
O3ii—Ba1—Ba2ix40.4 (6)Ba2xxi—Ba3—Ba3xxv110.04 (2)
Pd2iii—Ba1—Ba2ix118.664 (16)Ba1xxii—Ba3—Ba3xxv140.87 (3)
Pd2i—Ba1—Ba2ix66.93 (2)Ba1xxiii—Ba3—Ba3xxv86.66 (2)
Ba1iv—Ba1—Ba2ix89.09 (2)Ba1xxiv—Ba3—Ba3xxv86.66 (2)
Ba1v—Ba1—Ba2ix147.11 (2)Ba3xv—Ba3—Ba3xxv60.0
Ba1vi—Ba1—Ba2ix113.456 (15)Pd1—Ba4—Pd1ii109.5
Ba1vii—Ba1—Ba2ix62.776 (19)Pd1—Ba4—Pd1xxvi109.5
Ba2viii—Ba1—Ba2ix117.64 (4)Pd1ii—Ba4—Pd1xxvi109.5
O1i—Ba1—Ba2x105.68 (2)Pd1—Ba4—Pd1xxvii109.5
O3—Ba1—Ba2x40.4 (6)Pd1ii—Ba4—Pd1xxvii109.5
O3ii—Ba1—Ba2x153.62 (9)Pd1xxvi—Ba4—Pd1xxvii109.5
Pd2iii—Ba1—Ba2x66.93 (2)Pd1—Ba4—Ba3180.00 (3)
Pd2i—Ba1—Ba2x118.664 (16)Pd1ii—Ba4—Ba370.5
Ba1iv—Ba1—Ba2x113.456 (15)Pd1xxvi—Ba4—Ba370.5
Ba1v—Ba1—Ba2x62.776 (19)Pd1xxvii—Ba4—Ba370.5
Ba1vi—Ba1—Ba2x89.09 (2)Pd1—Ba4—Ba3xxvii70.5
Ba1vii—Ba1—Ba2x147.11 (2)Pd1ii—Ba4—Ba3xxvii70.5
Ba2viii—Ba1—Ba2x52.42 (3)Pd1xxvi—Ba4—Ba3xxvii70.5
Ba2ix—Ba1—Ba2x148.64 (4)Pd1xxvii—Ba4—Ba3xxvii180.00 (3)
O2i—Ba2—O3xi73.8 (9)Ba3—Ba4—Ba3xxvii109.5
O2i—Ba2—O3xii73.8 (9)Pd1—Ba4—Ba3xxvi70.5
O3xi—Ba2—O3xii147.5 (18)Pd1ii—Ba4—Ba3xxvi70.5
O2i—Ba2—Pd1ii82.98 (4)Pd1xxvi—Ba4—Ba3xxvi180.00 (3)
O3xi—Ba2—Pd1ii88.04 (10)Pd1xxvii—Ba4—Ba3xxvi70.5
O3xii—Ba2—Pd1ii88.04 (10)Ba3—Ba4—Ba3xxvi109.5
O2i—Ba2—Pd1i82.98 (4)Ba3xxvii—Ba4—Ba3xxvi109.5
O3xi—Ba2—Pd1i88.04 (10)Pd1—Ba4—Ba3ii70.5
O3xii—Ba2—Pd1i88.04 (10)Pd1ii—Ba4—Ba3ii180.00 (8)
Pd1ii—Ba2—Pd1i165.96 (9)Pd1xxvi—Ba4—Ba3ii70.5
O2i—Ba2—Ba2xiii45.0Pd1xxvii—Ba4—Ba3ii70.5
O3xi—Ba2—Ba2xiii106.4 (7)Ba3—Ba4—Ba3ii109.5
O3xii—Ba2—Ba2xiii47.3 (6)Ba3xxvii—Ba4—Ba3ii109.5
Pd1ii—Ba2—Ba2xiii54.36 (4)Ba3xxvi—Ba4—Ba3ii109.5
Pd1i—Ba2—Ba2xiii114.20 (4)Ba4—Pd1—Ba2xxviii137.72 (4)
O2i—Ba2—Ba2xiv45.0Ba4—Pd1—Ba2xxix137.72 (4)
O3xi—Ba2—Ba2xiv47.3 (6)Ba2xxviii—Pd1—Ba2xxix71.28 (7)
O3xii—Ba2—Ba2xiv106.4 (7)Ba4—Pd1—Ba2xxx137.72 (4)
Pd1ii—Ba2—Ba2xiv54.36 (4)Ba2xxviii—Pd1—Ba2xxx71.28 (7)
Pd1i—Ba2—Ba2xiv114.20 (4)Ba2xxix—Pd1—Ba2xxx71.28 (7)
Ba2xiii—Ba2—Ba2xiv60.0Ba1xxviii—Pd2—Ba1xxx74.93 (7)
O2i—Ba2—Ba2vi45.0Ba1xxviii—Pd2—Ba1xxix74.93 (7)
O3xi—Ba2—Ba2vi106.4 (7)Ba1xxx—Pd2—Ba1xxix74.93 (7)
O3xii—Ba2—Ba2vi47.3 (6)Ba1xxviii—Pd2—Ba3xxxi135.74 (2)
Pd1ii—Ba2—Ba2vi114.20 (4)Ba1xxx—Pd2—Ba3xxxi83.58 (4)
Pd1i—Ba2—Ba2vi54.36 (4)Ba1xxix—Pd2—Ba3xxxi135.74 (2)
Ba2xiii—Ba2—Ba2vi60.0Ba1xxviii—Pd2—Ba3xxxii83.58 (4)
Ba2xiv—Ba2—Ba2vi90.0Ba1xxx—Pd2—Ba3xxxii135.74 (2)
O2i—Ba2—Ba2vii45.0Ba1xxix—Pd2—Ba3xxxii135.74 (2)
O3xi—Ba2—Ba2vii47.3 (6)Ba3xxxi—Pd2—Ba3xxxii85.78 (8)
O3xii—Ba2—Ba2vii106.4 (7)Ba1xxviii—Pd2—Ba3xxxiii135.74 (2)
Pd1ii—Ba2—Ba2vii114.20 (4)Ba1xxx—Pd2—Ba3xxxiii135.74 (2)
Pd1i—Ba2—Ba2vii54.36 (4)Ba1xxix—Pd2—Ba3xxxiii83.58 (4)
Ba2xiii—Ba2—Ba2vii90.0Ba3xxxi—Pd2—Ba3xxxiii85.78 (8)
Ba2xiv—Ba2—Ba2vii60.0Ba3xxxii—Pd2—Ba3xxxiii85.78 (8)
Ba2vi—Ba2—Ba2vii60.0Ba1xxxiv—O1—Ba1xxx90.0
O2i—Ba2—Ba3xv148.58 (3)Ba1xxxiv—O1—Ba1xxviii180.0
O3xi—Ba2—Ba3xv103.8 (7)Ba1xxx—O1—Ba1xxviii90.0
O3xii—Ba2—Ba3xv103.8 (7)Ba1xxxiv—O1—Ba1xxix90.0
Pd1ii—Ba2—Ba3xv128.44 (6)Ba1xxx—O1—Ba1xxix90.0
Pd1i—Ba2—Ba3xv65.59 (4)Ba1xxviii—O1—Ba1xxix90.0
Ba2xiii—Ba2—Ba3xv149.778 (3)Ba1xxxiv—O1—Ba1xxxv90.0
Ba2xiv—Ba2—Ba3xv149.778 (3)Ba1xxx—O1—Ba1xxxv90.0
Ba2vi—Ba2—Ba3xv110.04 (2)Ba1xxviii—O1—Ba1xxxv90.0
Ba2vii—Ba2—Ba3xv110.04 (2)Ba1xxix—O1—Ba1xxxv180.0
O2i—Ba2—Ba3148.58 (3)Ba1xxxiv—O1—Ba1xxxvi90.0
O3xi—Ba2—Ba3103.8 (7)Ba1xxx—O1—Ba1xxxvi180.0
O3xii—Ba2—Ba3103.8 (7)Ba1xxviii—O1—Ba1xxxvi90.0
Pd1ii—Ba2—Ba365.59 (4)Ba1xxix—O1—Ba1xxxvi90.0
Pd1i—Ba2—Ba3128.44 (6)Ba1xxxv—O1—Ba1xxxvi90.0
Ba2xiii—Ba2—Ba3110.04 (2)Ba2xxxvii—O2—Ba2xxviii180.0
Ba2xiv—Ba2—Ba3110.04 (2)Ba2xxxvii—O2—Ba2xxxviii90.0
Ba2vi—Ba2—Ba3149.778 (3)Ba2xxviii—O2—Ba2xxxviii90.0
Ba2vii—Ba2—Ba3149.778 (3)Ba2xxxvii—O2—Ba2xxix90.0
Ba3xv—Ba2—Ba362.85 (5)Ba2xxviii—O2—Ba2xxix90.0
O2i—Ba2—Ba1xvi107.018 (16)Ba2xxxviii—O2—Ba2xxix90.0
O3xi—Ba2—Ba1xvi43.6 (7)Ba2xxxvii—O2—Ba2iv90.0
O3xii—Ba2—Ba1xvi152.63 (9)Ba2xxviii—O2—Ba2iv90.0
Pd1ii—Ba2—Ba1xvi119.33 (2)Ba2xxxviii—O2—Ba2iv90.0
Pd1i—Ba2—Ba1xvi65.27 (2)Ba2xxix—O2—Ba2iv180.0
Ba2xiii—Ba2—Ba1xvi148.818 (19)Ba2xxxvii—O2—Ba2xxx90.0
Ba2xiv—Ba2—Ba1xvi90.91 (2)Ba2xxviii—O2—Ba2xxx90.0
Ba2vi—Ba2—Ba1xvi113.456 (15)Ba2xxxviii—O2—Ba2xxx180.0
Ba2vii—Ba2—Ba1xvi63.792 (15)Ba2xxix—O2—Ba2xxx90.0
Ba3xv—Ba2—Ba1xvi60.774 (19)Ba2iv—O2—Ba2xxx90.0
Ba3—Ba2—Ba1xvi89.36 (2)Ba2viii—O3—Ba2xxxix85.3 (13)
Pd2xvii—Ba3—Pd2xviii94.07 (7)Ba2viii—O3—Ba2x85.3 (13)
Pd2xvii—Ba3—Pd2xix94.07 (7)Ba2xxxix—O3—Ba2x85.3 (13)
Pd2xviii—Ba3—Pd2xix94.07 (7)Ba2viii—O3—Ba1v178.1 (17)
Pd2xvii—Ba3—Ba4122.33 (5)Ba2xxxix—O3—Ba1v96.02 (7)
Pd2xviii—Ba3—Ba4122.33 (5)Ba2x—O3—Ba1v96.02 (7)
Pd2xix—Ba3—Ba4122.33 (5)Ba2viii—O3—Ba1vi96.02 (7)
Pd2xvii—Ba3—Ba2151.51 (7)Ba2xxxix—O3—Ba1vi96.02 (7)
Pd2xviii—Ba3—Ba267.311 (13)Ba2x—O3—Ba1vi178.1 (17)
Pd2xix—Ba3—Ba267.311 (13)Ba1v—O3—Ba1vi82.6 (12)
Ba4—Ba3—Ba286.16 (3)Ba2viii—O3—Ba196.02 (7)
Pd2xvii—Ba3—Ba2xx67.311 (13)Ba2xxxix—O3—Ba1178.1 (17)
Pd2xviii—Ba3—Ba2xx67.311 (13)Ba2x—O3—Ba196.02 (7)
Pd2xix—Ba3—Ba2xx151.51 (7)Ba1v—O3—Ba182.6 (12)
Ba4—Ba3—Ba2xx86.16 (3)Ba1vi—O3—Ba182.6 (12)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) z+1/2, x+1, y+1/2; (v) y+1, z, x+1; (vi) z+1/2, x1/2, y; (vii) y+1/2, z, x1/2; (viii) y+1, z+1/2, x+1/2; (ix) z+1, x+1/2, y+1/2; (x) z+1, x, y; (xi) x1/2, y+1/2, z; (xii) x1/2, y1/2, z; (xiii) y+1/2, z, x+1/2; (xiv) z+1/2, x+1/2, y; (xv) x, y, z; (xvi) z, x+1, y; (xvii) x1, y+1, z+1; (xviii) x+1, y1, z+1; (xix) x+1, y+1, z1; (xx) y, z, x; (xxi) z, x, y; (xxii) y, z, x1; (xxiii) z, x1, y; (xxiv) x1, y, z; (xxv) x, y, z; (xxvi) x+1/2, y, z+1/2; (xxvii) x+1/2, y+1/2, z; (xxviii) y+1/2, z+1/2, x; (xxix) z+1/2, x, y+1/2; (xxx) x, y+1/2, z+1/2; (xxxi) x+1, y+1, z+1; (xxxii) x+1, y+1, z+1; (xxxiii) x+1, y+1, z+1; (xxxiv) y+1, z+1/2, x+3/2; (xxxv) z+1/2, x+3/2, y+1; (xxxvi) x+3/2, y+1, z+1/2; (xxxvii) y+1/2, z+1/2, x+1; (xxxviii) x+1, y+1/2, z+1/2; (xxxix) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaBa2.125PdO0.422
Mr404.91
Crystal system, space groupCubic, F43m
Temperature (K)293
a (Å)15.878 (1)
V3)4003.0 (4)
Z32
Radiation typeMo Kα
µ (mm1)19.89
Crystal size (mm)0.14 × 0.09 × 0.07
Data collection
DiffractometerStoe AED4
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.060, 0.259
No. of measured, independent and
observed [I > 2σ(I)] reflections
1671, 336, 270
Rint0.079
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.042, 1.16
No. of reflections336
No. of parameters22
Δρmax, Δρmin (e Å3)1.65, 1.32
Absolute structureFlack (1983), XXXX Friedel pairs
Absolute structure parameter0.08 (11)

Computer programs: DIF4 (Stoe & Cie, 1988), DIF4, REDU4 (Stoe & Cie, 1988), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhof, 1996).

Selected bond lengths (Å) top
Ba1—O1i2.7999 (16)Ba2—Ba2vii3.8225 (18)
Ba1—O33.00 (4)Ba2—Ba34.2849 (11)
Ba1—Pd2ii3.255 (2)Ba3—Pd2viii3.2825 (17)
Ba1—Ba1iii3.960 (2)Ba3—Ba44.1393 (18)
Ba1—Ba2iv4.3277 (6)Ba3—Ba1ix4.3567 (11)
Ba2—O2i2.7029 (13)Ba3—Ba3x4.468 (3)
Ba2—O3v2.82 (3)Ba4—Pd12.888 (3)
Ba2—Pd1vi3.280 (2)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1, z+1; (iii) z+1/2, x+1, y+1/2; (iv) y+1, z+1/2, x+1/2; (v) x1/2, y+1/2, z; (vi) x, y+1/2, z+1/2; (vii) y+1/2, z, x+1/2; (viii) x1, y+1, z+1; (ix) y, z, x1; (x) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds