Download citation
Download citation
link to html
Tetrasodium tricarbonatodioxouranate(VI), Na4[UO2(CO3)3], crystallizes in the trigonal space group P\overline 3c1. Though the symmetry differs from other similar compounds (e.g. the NH4+, K+ and Tl+ salts) which are monoclinic, there is a common structure motif consisting of UO2(CO3)3 groups with a trigonal outline when viewed along the shortest O-U-O bond pair. In Na4[UO2(CO3)3], there are three non-equivalent Na atoms; Na1 (site symmetry \overline 3) and Na2 (site symmetry 3) are in centres of face-sharing octahedra, which form a chain running parallel to the c axis at each unit-cell corner, whereas the Na3 atom is surrounded by a deformed square pyramid of O atoms, forming edge-sharing triplets. The title compound has also a natural dimorph, namely the recently approved triclinic mineral cejkaite.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005992/br6010sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005992/br6010Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](O-C) = 0.006 Å
  • R factor = 0.024
  • wR factor = 0.062
  • Data-to-parameter ratio = 12.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_741 Alert C Bond Calc 3.20430(10), Rep 3.20420 .... Missing s.u. NA1 -NA2 1.555 7.555 PLAT_741 Alert C Bond Calc 3.20430(10), Rep 3.20430 .... Missing s.u. NA1 -NA2 1.555 1.555 PLAT_741 Alert C Bond Calc 3.20430(10), Rep 3.20430 .... Missing s.u. NA2 -NA1 1.555 4.555 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C3 Na4 O11 U1 Atom count from _chemical_formula_moiety:C1 Na4 O11 U1
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Recently, we have found a natural triclinic compound of Na4[UO2(CO3)3] composition in Jáchymov, the Czech Republic. This natural triclinic material does not form crystals suitable for single-crystal study. We recognized that a compound of the same chemistry but with trigonal symmetry had been described by Douglass (1956), who determined the extinction symbol, unit-cell dimensions and also additional physical parameters. An attempt to prepare a synthetic analogue of our natural triclinic compound failed; instead, we synthesized a trigonal dimorph equivalent to the material of Douglass for which we report a complete structure.

There are chemically similar compounds – NH4[UO2(CO3)3], K4[UO2(CO3)3] and Tl4[UO2(CO3)3] – for which the crystal structures are known (Graziani et al., 1972; Anderson et al., 1980; Mereiter, 1986; respectively). All these materials crystallize in the monoclinic space group C2/c. They share the common basic structural motif of UO2(CO3)3 groups with the compound we synthesized. This group is, in our case, built up from the asymmetric unit (Fig. 1) due to threefold axis and contains three planar CO3 triangles sharing one of their edges with the UO2O6 polyhedron. The lengths of the U—O bonds oriented along the direction of the c axis (U1—O1 and U1—O2) are significantly shorter compared to the U—O distances in the medial plane of the UO2O6 polyhedron (U1—O11 and U1—O12) in the compound Na4[UO2(CO3)3]. The planes of the CO3 triangles attached to the UO2O6 polyhedron are inclined from the 001 plane. Atoms Na1 and Na2 are octahedrally coordinated by O13 atoms. The octahedra share a common face and form a chain of alternating polyhedra around Na1 and Na2 running parallel to the c axis and situated at each unit-cell corner. The octahedron around Na1 is fairly regular, with quadratic elongation of 1.012 and bond-angle s.u. of 6.87°. On the contrary, the polyhedron around Na2 departs significantly from ideal geometry, which results in quadratic elongation of 1.121 and bond-angle s.u. of 18.78°. Volumes of both octahedra are comparable; the polyhedron around Na1 has a volume of 19.02 Å3 and that around Na2 17.40 Å3. Atom Na3 has a coordination number of 5; the polyhedron around it can be described as square pyramidal as τ = 0.15 (Addison et al., 1984). Three of these polyhedra build up edge-sharing triplets (Fig. 4). The shared edge is defined by the atoms O1—O2 and it runs parallel to the c axis (Fig. 2). The overall structure motif is apparent from Fig. 3. Triplets of polyhedra around Na3 atoms share vertices of their common edges with vertices of UO2(CO3)3 complexes adjacent to them in the [001] direction. These complexes, in turn, share edges O11–O12 with laterally neighbouring square pyramids around Na3 atoms, building up two-dimensional sheets parallel to 001 typical for this structure. The sheets are stacked along [001] so the next sheet is rotated by 60° around [001] with respect to adjacent one. Finally, each of three apical carbonate O13 atoms from any UO2(CO3)3 complex is shared by the octahedron around either Na1 or Na2 (depending on the height of the sheet along [001] in the unit cell) and also make a vertex of laterally adjacent triplet of polyhedra around Na3 (Fig. 4). Using the approach of effective coordination numbers (Hoppe, 1979) and the program of Rieder (1993), we calculated effective coordination numbers (ECoNs) for central atoms as U1 = 2.24, Na1 = 6.00, Na2 = 6.12, Na3 = 4.76 and C1 = 2.94; for U1 and Na3 polyedrathese ECoNs depart significantly from their ideal values. This could be ascribed to substantial irregularity of individual polyhedra. Their irregularity results results also in bond-valence sums departing from ideal values. Using the data of Brown & Altermatt (1985) and the program of Wills & Brown (1999), we calculated bond-valence sums as [central atom, bond valence sum in vu (valance units) and departure in percent from the ideal oxidation state] U1 6.59 [10], Na1 1.074 [7], Na2 1.02 [2], Na3 1.127 [13], C1 4.033 [1].

Experimental top

Clear yellow hexagonal prismatic crystals up to 1 mm long of the title compound have been synthesized from synthetic triclinic Na4[(UO)2(CO3)3] powder by recrystallization in sealed silica glass tubes under hydrothermal conditions at a pressure of about 20 MPa and a temperature of 408 K for 3 d. In addition to the crystals of the title compound, we recovered from the tube an orange powdered material which we identified to contain sodium di- and heptauranates.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Shape Software, 1999).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of Na4[UO2(CO3)3] with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability (PLATON, Speck, 1999).
[Figure 2] Fig. 2. Polyhedral presentation of an edge-sharing triplet of NaO5 polyhedra.
[Figure 3] Fig. 3. Projection of the crystal structure of Na4[UO2(CO3)3] onto the 100 plane. Note the chain of alternating octahedra around the Na1 and Na2 atoms parallel to [001] at the unit-cell edge. Colour-coding of polyhedra, red: UO2O6 polyhedron; blue: planar CO3 triangles; yellow: NaO6 octahedra; green: NaO5 irregular trigonal bipyramid.
[Figure 4] Fig. 4. Polyhedral presentation of a single layer consisting of the UO2-(CO3)3 complex, triplets of polyhedra around Na3 and octahedra around Na1 or Na2 found in the Na4[UO2(CO3)3] viewed down [001]. Colour-coding of polyhedra, red: UO2O6 polyhedron; blue: planar CO3 triangles; yellow: NaO6 octahedra; green: NaO5 irregular trigonal bipyramid.
(I) top
Crystal data top
Na4[UO2(CO3)3]Dx = 3.720 Mg m3
Mr = 542.02Mo Kα radiation, λ = 0.71070 Å
Trigonal, P3c1Cell parameters from 10249 reflections
a = 9.3380 (2) Åθ = 1–27.5°
c = 12.8170 (3) ŵ = 17.01 mm1
V = 967.89 (4) Å3T = 293 K
Z = 4Bar, yellow
F(000) = 9680.11 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
746 independent reflections
Radiation source: fine-focus sealed tube615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scans to fill the Ewald sphereh = 1212
Absorption correction: gaussian
(Coppens, 1970)
k = 1212
Tmin = 0.208, Tmax = 0.617l = 1616
22328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0358P)2 + 2.8258P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.07Δρmax = 2.33 e Å3
746 reflectionsΔρmin = 1.73 e Å3
60 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0074 (5)
Crystal data top
Na4[UO2(CO3)3]Z = 4
Mr = 542.02Mo Kα radiation
Trigonal, P3c1µ = 17.01 mm1
a = 9.3380 (2) ÅT = 293 K
c = 12.8170 (3) Å0.11 × 0.05 × 0.05 mm
V = 967.89 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
746 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
615 reflections with I > 2σ(I)
Tmin = 0.208, Tmax = 0.617Rint = 0.090
22328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02460 parameters
wR(F2) = 0.0620 restraints
S = 1.07Δρmax = 2.33 e Å3
746 reflectionsΔρmin = 1.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. One strong reflections 010 were omitted from the final refinement due inaccuracy in measurement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.33330.66670.130224 (17)0.01212 (18)
Na10.00000.00000.00000.0221 (12)
Na20.00000.00000.25000.0229 (12)
Na30.1233 (3)0.5688 (2)0.12367 (17)0.0295 (5)
C10.0741 (6)0.3279 (5)0.1280 (3)0.0171 (9)
O110.0462 (5)0.4509 (4)0.1186 (3)0.0274 (8)
O120.2299 (5)0.3771 (5)0.1436 (3)0.0283 (8)
O130.0358 (4)0.1805 (4)0.1219 (3)0.0235 (8)
O10.33330.66670.2714 (6)0.0228 (15)
O20.33330.66670.0110 (6)0.0214 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0117 (3)0.0110.0136 (2)0.0050.0000.000
Na10.021 (2)0.0210.024 (3)0.0100.0000.000
Na20.025 (3)0.0230.020 (3)0.0120.0000.000
Na30.0174 (10)0.0182 (10)0.0522 (13)0.0085 (9)0.0029 (9)0.0014 (9)
C10.014 (2)0.014 (2)0.021 (2)0.0051 (18)0.0039 (17)0.0022 (17)
O110.0211 (18)0.0138 (17)0.048 (2)0.0092 (14)0.0001 (16)0.0017 (15)
O120.0125 (16)0.0139 (17)0.057 (2)0.0058 (14)0.0012 (16)0.0022 (17)
O130.0149 (17)0.0122 (16)0.040 (2)0.0042 (14)0.0005 (14)0.0015 (14)
O10.023 (3)0.0250.022 (3)0.0120.0000.000
O20.026 (4)0.0240.013 (3)0.0120.0000.000
Geometric parameters (Å, º) top
U1—O11.809 (8)Na2—O132.492 (4)
U1—O21.810 (7)Na2—Na1xii3.2043
U1—O122.379 (4)Na2—Na3xi3.940 (2)
U1—O12i2.380 (4)Na2—Na3xiv3.940 (2)
U1—O12ii2.380 (4)Na2—Na3xv3.940 (2)
U1—O11i2.422 (4)Na2—Na3ii3.940 (2)
U1—O112.422 (4)Na3—O12i2.287 (4)
U1—O11ii2.422 (4)Na3—O13xvi2.320 (4)
U1—C1i2.865 (4)Na3—O112.338 (4)
U1—C12.865 (4)Na3—O1xvii2.486 (5)
U1—C1ii2.865 (4)Na3—O2x2.541 (5)
U1—Na3iii3.784 (2)Na3—C1xvi3.092 (5)
Na1—O13iv2.440 (3)Na3—Na3xvi3.620 (4)
Na1—O13v2.440 (3)Na3—Na3xi3.620 (4)
Na1—O132.440 (3)Na3—U1xvii3.784 (2)
Na1—O13vi2.440 (3)Na3—Na3iii3.803 (4)
Na1—O13vii2.440 (3)Na3—U1x3.868 (2)
Na1—O13viii2.440 (3)C1—O131.242 (5)
Na1—Na2vi3.2042C1—O121.303 (7)
Na1—Na23.2043C1—O111.304 (6)
Na1—Na3ix3.926 (2)C1—Na3xi3.092 (5)
Na1—Na3x3.926 (2)O12—Na3ii2.287 (4)
Na1—Na3xi3.926 (2)O13—Na3xi2.320 (4)
Na1—Na3ii3.926 (2)O1—Na3iii2.486 (5)
Na2—O13vii2.492 (4)O1—Na3xviii2.486 (5)
Na2—O13viii2.492 (4)O1—Na3xix2.486 (5)
Na2—O13xii2.492 (4)O2—Na3x2.541 (5)
Na2—O13iii2.492 (4)O2—Na3xx2.541 (5)
Na2—O13xiii2.492 (4)O2—Na3v2.541 (5)
O1—U1—O2180.000 (1)O13xii—Na2—Na1131.21 (8)
O1—U1—O1285.88 (10)O13iii—Na2—Na1131.21 (8)
O2—U1—O1294.12 (10)O13xiii—Na2—Na1131.21 (8)
O1—U1—O12i85.88 (10)O13—Na2—Na148.79 (8)
O2—U1—O12i94.12 (10)O13vii—Na2—Na1xii131.21 (8)
O12—U1—O12i119.49 (3)O13viii—Na2—Na1xii131.21 (8)
O1—U1—O12ii85.88 (10)O13xii—Na2—Na1xii48.79 (8)
O2—U1—O12ii94.12 (10)O13iii—Na2—Na1xii48.79 (8)
O12—U1—O12ii119.49 (3)O13xiii—Na2—Na1xii48.79 (8)
O12i—U1—O12ii119.49 (3)O13—Na2—Na1xii131.21 (8)
O1—U1—O11i93.52 (9)Na1—Na2—Na1xii180.0
O2—U1—O11i86.48 (9)O13vii—Na2—Na3xi70.70 (9)
O12—U1—O11i173.15 (12)O13viii—Na2—Na3xi110.53 (8)
O12i—U1—O11i53.67 (12)O13xii—Na2—Na3xi90.31 (8)
O12ii—U1—O11i67.22 (12)O13iii—Na2—Na3xi81.71 (8)
O1—U1—O1193.52 (9)O13xiii—Na2—Na3xi162.01 (9)
O2—U1—O1186.48 (9)O13—Na2—Na3xi33.63 (9)
O12—U1—O1153.67 (12)Na1—Na2—Na3xi65.73 (3)
O12i—U1—O1167.22 (12)Na1xii—Na2—Na3xi114.27 (3)
O12ii—U1—O11173.15 (12)O13vii—Na2—Na3xiv33.63 (9)
O11i—U1—O11119.63 (2)O13viii—Na2—Na3xiv70.70 (9)
O1—U1—O11ii93.52 (9)O13xii—Na2—Na3xiv81.71 (8)
O2—U1—O11ii86.48 (9)O13iii—Na2—Na3xiv162.01 (9)
O12—U1—O11ii67.22 (12)O13xiii—Na2—Na3xiv90.31 (8)
O12i—U1—O11ii173.15 (12)O13—Na2—Na3xiv110.53 (8)
O12ii—U1—O11ii53.67 (12)Na1—Na2—Na3xiv65.73 (3)
O11i—U1—O11ii119.63 (2)Na1xii—Na2—Na3xiv114.27 (3)
O11—U1—O11ii119.63 (2)Na3xi—Na2—Na3xiv104.28 (4)
O1—U1—C1i90.56 (8)O13vii—Na2—Na3xv81.71 (8)
O2—U1—C1i89.44 (8)O13viii—Na2—Na3xv162.01 (9)
O12—U1—C1i146.23 (14)O13xii—Na2—Na3xv33.63 (9)
O12i—U1—C1i26.77 (14)O13iii—Na2—Na3xv70.70 (9)
O12ii—U1—C1i93.65 (14)O13xiii—Na2—Na3xv110.53 (8)
O11i—U1—C1i26.93 (14)O13—Na2—Na3xv90.31 (8)
O11—U1—C1i93.18 (14)Na1—Na2—Na3xv114.27 (3)
O11ii—U1—C1i146.55 (14)Na1xii—Na2—Na3xv65.73 (3)
O1—U1—C190.56 (8)Na3xi—Na2—Na3xv57.72 (6)
O2—U1—C189.44 (8)Na3xiv—Na2—Na3xv97.84 (6)
O12—U1—C126.77 (14)O13vii—Na2—Na3ii110.53 (8)
O12i—U1—C193.65 (14)O13viii—Na2—Na3ii33.63 (9)
O12ii—U1—C1146.23 (14)O13xii—Na2—Na3ii162.01 (9)
O11i—U1—C1146.55 (14)O13iii—Na2—Na3ii90.31 (8)
O11—U1—C126.93 (14)O13xiii—Na2—Na3ii81.71 (8)
O11ii—U1—C193.18 (14)O13—Na2—Na3ii70.70 (9)
C1i—U1—C1119.990 (4)Na1—Na2—Na3ii65.73 (3)
O1—U1—C1ii90.56 (8)Na1xii—Na2—Na3ii114.27 (3)
O2—U1—C1ii89.44 (8)Na3xi—Na2—Na3ii104.28 (4)
O12—U1—C1ii93.65 (14)Na3xiv—Na2—Na3ii104.28 (4)
O12i—U1—C1ii146.22 (14)Na3xv—Na2—Na3ii154.74 (7)
O12ii—U1—C1ii26.77 (14)O12i—Na3—O13xvi85.84 (15)
O11i—U1—C1ii93.17 (14)O12i—Na3—O1170.15 (16)
O11—U1—C1ii146.55 (14)O13xvi—Na3—O11155.48 (16)
O11ii—U1—C1ii26.93 (14)O12i—Na3—O1xvii136.50 (19)
C1i—U1—C1ii119.991 (4)O13xvi—Na3—O1xvii110.46 (13)
C1—U1—C1ii119.991 (3)O11—Na3—O1xvii91.08 (11)
O1—U1—Na3iii33.53 (3)O12i—Na3—O2x146.30 (18)
O2—U1—Na3iii146.47 (3)O13xvi—Na3—O2x109.34 (14)
O12—U1—Na3iii94.76 (10)O11—Na3—O2x89.31 (11)
O12i—U1—Na3iii53.70 (11)O1xvii—Na3—O2x67.4 (2)
O12ii—U1—Na3iii109.24 (10)O12i—Na3—C1xvi106.38 (16)
O11i—U1—Na3iii81.14 (9)O13xvi—Na3—C1xvi20.92 (13)
O11—U1—Na3iii73.18 (10)O11—Na3—C1xvi176.39 (15)
O11ii—U1—Na3iii126.65 (10)O1xvii—Na3—C1xvi92.22 (11)
C1i—U1—Na3iii66.02 (9)O2x—Na3—C1xvi93.32 (11)
C1—U1—Na3iii84.22 (9)O12i—Na3—Na3xvi168.08 (14)
C1ii—U1—Na3iii122.11 (9)O13xvi—Na3—Na3xvi84.17 (13)
O13iv—Na1—O13v83.42 (12)O11—Na3—Na3xvi120.25 (11)
O13iv—Na1—O1396.58 (12)O1xvii—Na3—Na3xvi43.26 (11)
O13v—Na1—O1396.58 (12)O2x—Na3—Na3xvi44.56 (10)
O13iv—Na1—O13vi83.42 (12)C1xvi—Na3—Na3xvi63.32 (12)
O13v—Na1—O13vi83.42 (12)O12i—Na3—Na3xi129.78 (14)
O13—Na1—O13vi180.0O13xvi—Na3—Na3xi144.17 (13)
O13iv—Na1—O13vii96.58 (12)O11—Na3—Na3xi60.27 (11)
O13v—Na1—O13vii180.0O1xvii—Na3—Na3xi43.26 (11)
O13—Na1—O13vii83.42 (12)O2x—Na3—Na3xi44.56 (10)
O13vi—Na1—O13vii96.58 (12)C1xvi—Na3—Na3xi123.31 (12)
O13iv—Na1—O13viii180.0Na3xvi—Na3—Na3xi60.0
O13v—Na1—O13viii96.58 (12)O12i—Na3—U1xvii115.04 (13)
O13—Na1—O13viii83.42 (12)O13xvi—Na3—U1xvii103.56 (12)
O13vi—Na1—O13viii96.58 (12)O11—Na3—U1xvii91.46 (11)
O13vii—Na1—O13viii83.42 (12)O1xvii—Na3—U1xvii23.70 (15)
O13iv—Na1—Na2vi50.20 (8)O2x—Na3—U1xvii91.12 (14)
O13v—Na1—Na2vi50.20 (8)C1xvi—Na3—U1xvii90.96 (10)
O13—Na1—Na2vi129.80 (8)Na3xvi—Na3—U1xvii61.42 (3)
O13vi—Na1—Na2vi50.20 (8)Na3xi—Na3—U1xvii61.42 (3)
O13vii—Na1—Na2vi129.80 (8)O12i—Na3—Na3iii53.38 (11)
O13viii—Na1—Na2vi129.80 (8)O13xvi—Na3—Na3iii96.48 (12)
O13iv—Na1—Na2129.80 (8)O11—Na3—Na3iii73.50 (12)
O13v—Na1—Na2129.80 (8)O1xvii—Na3—Na3iii84.12 (16)
O13—Na1—Na250.20 (8)O2x—Na3—Na3iii146.57 (13)
O13vi—Na1—Na2129.80 (8)C1xvi—Na3—Na3iii105.37 (10)
O13vii—Na1—Na250.20 (8)Na3xvi—Na3—Na3iii121.46 (6)
O13viii—Na1—Na250.20 (8)Na3xi—Na3—Na3iii102.48 (2)
Na2vi—Na1—Na2180.0U1xvii—Na3—Na3iii61.68 (6)
O13iv—Na1—Na3ix33.46 (9)O12i—Na3—U1x126.78 (13)
O13v—Na1—Na3ix112.25 (9)O13xvi—Na3—U1x102.29 (13)
O13—Na1—Na3ix108.64 (9)O11—Na3—U1x88.81 (12)
O13vi—Na1—Na3ix71.36 (9)O1xvii—Na3—U1x90.05 (16)
O13vii—Na1—Na3ix67.75 (9)O2x—Na3—U1x22.64 (13)
O13viii—Na1—Na3ix146.54 (9)C1xvi—Na3—U1x92.66 (10)
Na2vi—Na1—Na3ix66.19 (3)Na3xvi—Na3—U1x62.09 (3)
Na2—Na1—Na3ix113.81 (3)Na3xi—Na3—U1x62.09 (3)
O13iv—Na1—Na3x71.36 (9)U1xvii—Na3—U1x113.76 (5)
O13v—Na1—Na3x33.46 (9)Na3iii—Na3—U1x161.21 (4)
O13—Na1—Na3x67.75 (9)O12i—Na3—U134.30 (10)
O13vi—Na1—Na3x112.25 (9)O13xvi—Na3—U1119.76 (11)
O13vii—Na1—Na3x146.54 (9)O11—Na3—U135.93 (10)
O13viii—Na1—Na3x108.64 (9)O1xvii—Na3—U1118.91 (9)
Na2vi—Na1—Na3x66.19 (3)O2x—Na3—U1119.78 (9)
Na2—Na1—Na3x113.81 (3)C1xvi—Na3—U1140.54 (12)
Na3ix—Na1—Na3x104.80 (4)Na3xvi—Na3—U1156.05 (8)
O13iv—Na1—Na3xi67.75 (9)Na3xi—Na3—U196.08 (8)
O13v—Na1—Na3xi108.64 (9)U1xvii—Na3—U1107.89 (5)
O13—Na1—Na3xi33.46 (9)Na3iii—Na3—U158.91 (5)
O13vi—Na1—Na3xi146.54 (9)U1x—Na3—U1109.66 (5)
O13vii—Na1—Na3xi71.36 (9)O13—C1—O12124.0 (4)
O13viii—Na1—Na3xi112.25 (9)O13—C1—O11123.5 (5)
Na2vi—Na1—Na3xi113.81 (3)O12—C1—O11112.5 (4)
Na2—Na1—Na3xi66.19 (3)O13—C1—U1176.7 (3)
Na3ix—Na1—Na3xi75.20 (4)O12—C1—U155.3 (2)
Na3x—Na1—Na3xi75.20 (4)O11—C1—U157.2 (2)
O13iv—Na1—Na3ii146.54 (9)O13—C1—Na3xi41.8 (2)
O13v—Na1—Na3ii67.75 (9)O12—C1—Na3xi163.8 (3)
O13—Na1—Na3ii71.36 (9)O11—C1—Na3xi82.3 (3)
O13vi—Na1—Na3ii108.64 (9)U1—C1—Na3xi139.37 (19)
O13vii—Na1—Na3ii112.25 (9)C1—O11—Na3153.2 (3)
O13viii—Na1—Na3ii33.46 (9)C1—O11—U195.8 (3)
Na2vi—Na1—Na3ii113.81 (3)Na3—O11—U1109.57 (15)
Na2—Na1—Na3ii66.19 (3)C1—O12—Na3ii144.4 (3)
Na3ix—Na1—Na3ii180.0C1—O12—U197.9 (3)
Na3x—Na1—Na3ii75.20 (4)Na3ii—O12—U1112.90 (16)
Na3xi—Na1—Na3ii104.80 (4)C1—O13—Na3xi117.2 (3)
O13vii—Na2—O13viii81.30 (12)C1—O13—Na1118.9 (3)
O13vii—Na2—O13xii83.99 (15)Na3xi—O13—Na1111.09 (15)
O13viii—Na2—O13xii148.55 (15)C1—O13—Na2113.0 (3)
O13vii—Na2—O13iii148.55 (15)Na3xi—O13—Na2109.85 (16)
O13viii—Na2—O13iii123.64 (16)Na1—O13—Na281.01 (10)
O13xii—Na2—O13iii81.30 (12)U1—O1—Na3iii122.77 (15)
O13vii—Na2—O13xiii123.64 (16)U1—O1—Na3xviii122.77 (15)
O13viii—Na2—O13xiii83.99 (15)Na3iii—O1—Na3xviii93.5 (2)
O13xii—Na2—O13xiii81.30 (12)U1—O1—Na3xix122.77 (15)
O13iii—Na2—O13xiii81.30 (12)Na3iii—O1—Na3xix93.5 (2)
O13vii—Na2—O1381.30 (12)Na3xviii—O1—Na3xix93.5 (2)
O13viii—Na2—O1381.30 (12)U1—O2—Na3x124.65 (14)
O13xii—Na2—O13123.64 (16)U1—O2—Na3xx124.65 (14)
O13iii—Na2—O1383.99 (15)Na3x—O2—Na3xx90.9 (2)
O13xiii—Na2—O13148.55 (15)U1—O2—Na3v124.65 (14)
O13vii—Na2—Na148.79 (8)Na3x—O2—Na3v90.9 (2)
O13viii—Na2—Na148.79 (8)Na3xx—O2—Na3v90.9 (2)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) x, x+y, z+1/2; (iv) xy, x, z; (v) y, x+y, z; (vi) x, y, z; (vii) y, xy, z; (viii) x+y, x, z; (ix) y1, x+y1, z; (x) x, y+1, z; (xi) x+y1, x, z; (xii) xy, y, z+1/2; (xiii) y, x, z+1/2; (xiv) x, y1, z; (xv) y1, x, z+1/2; (xvi) y, xy+1, z; (xvii) xy, y+1, z+1/2; (xviii) y, x+1, z+1/2; (xix) xy+1, y+1, z+1/2; (xx) xy+1, x+1, z.

Experimental details

Crystal data
Chemical formulaNa4[UO2(CO3)3]
Mr542.02
Crystal system, space groupTrigonal, P3c1
Temperature (K)293
a, c (Å)9.3380 (2), 12.8170 (3)
V3)967.89 (4)
Z4
Radiation typeMo Kα
µ (mm1)17.01
Crystal size (mm)0.11 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.208, 0.617
No. of measured, independent and
observed [I > 2σ(I)] reflections
22328, 746, 615
Rint0.090
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.07
No. of reflections746
No. of parameters60
Δρmax, Δρmin (e Å3)2.33, 1.73

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), COLLECT and DENZO, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ATOMS (Shape Software, 1999).

Selected geometric parameters (Å, º) top
U1—O11.809 (8)Na3—O13ii2.320 (4)
U1—O21.810 (7)Na3—O112.338 (4)
U1—O122.379 (4)Na3—O1iii2.486 (5)
U1—O112.422 (4)Na3—O2iv2.541 (5)
Na1—O132.440 (3)C1—O131.242 (5)
Na2—O132.492 (4)C1—O121.303 (7)
Na3—O12i2.287 (4)C1—O111.304 (6)
O1—U1—O2180.000 (1)O12i—Na3—O1170.15 (16)
O1—U1—O1285.88 (10)O13ii—Na3—O11155.48 (16)
O1—U1—O1193.52 (9)O12i—Na3—O1iii136.50 (19)
O12—U1—O1153.67 (12)O13ii—Na3—O1iii110.46 (13)
O12i—U1—O1167.22 (12)O11—Na3—O1iii91.08 (11)
O12v—U1—O11173.15 (12)O12i—Na3—O2iv146.30 (18)
O13vi—Na1—O1396.58 (12)O13ii—Na3—O2iv109.34 (14)
O13vii—Na2—O13viii83.99 (15)O11—Na3—O2iv89.31 (11)
O13ix—Na2—O13viii148.55 (15)O1iii—Na3—O2iv67.4 (2)
O13vii—Na2—O1381.30 (12)O13—C1—O12124.0 (4)
O13viii—Na2—O13123.64 (16)O13—C1—O11123.5 (5)
O13x—Na2—O13148.55 (15)O12—C1—O11112.5 (4)
O12i—Na3—O13ii85.84 (15)
Symmetry codes: (i) x+y, x+1, z; (ii) y, xy+1, z; (iii) xy, y+1, z+1/2; (iv) x, y+1, z; (v) y+1, xy+1, z; (vi) xy, x, z; (vii) y, xy, z; (viii) xy, y, z+1/2; (ix) x+y, x, z; (x) y, x, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds