inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages i53-i54

Tetra­ammonium di­aqua­diperoxido­octa­molybdate(VI) tetra­hydrate

aLaboratory of Advanced Catalysis for Sustainability, School of Chemistry, F11, The University of Sydney, Sydney, NSW 2006, Australia, and bCrystal Structure Analysis Facility, School of Chemistry, F11, The University of Sydney, Sydney, NSW 2006, Australia
*Correspondence e-mail: a.masters@chem.usyd.edu.au

(Received 11 May 2009; accepted 18 June 2009; online 27 June 2009)

The title compound (NH4)4[Mo8O24(O2)2(H2O)2]·4H2O, consists of an octa­molybdate cluster with a crystallographic centre of symmetry. The clusters pack in a cubic close packing arrangement defining channels containing water mol­ecules and ammonium cations, which exhibit hydrogen bonding with neighbouring clusters. Hydrogen bonding also exists between the coordinated water mol­ecules of one cluster with one of the O atoms of the peroxido fragment in a neighbouring cluster.

Related literature

For work on polyoxidomolybdates, see: Pope (1983[Pope, M. T. (1983). In Heteropoly and Isopoly Oxometallates. Berlin: Springer.]); Pope & Müller (2001[Pope, M. T. & Müller, A. (2001). In Polyoxometalate Chemistry From Topology via Self Assembly to Applications. Berlin: Springer-Verlag.]); Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-387.]). Baerwald (1885[Baerwald, C. (1885). Thesis, University of Berlin, Germany.]) probably reported the first peroxidomolybdate. Stomberg et al. have prepared a range of peroxidomolybdates and obtained crystal structures of these species, see: Larking & Stomberg (1970[Larking, I. & Stomberg, R. (1970). Acta Chem. Scand. 24, 2043-2054.], 1972[Larking, I. & Stomberg, R. (1972). Acta Chem. Scand. 26, 3708-3722.]); Olson & Stomberg (1996[Olson, S. & Stomberg, R. (1996). Z. Kristallogr. 211, 895-899.], 1997a[Olson, S. & Stomberg, R. (1997a). Z. Kristallogr. 212, 699-703.],b[Olson, S. & Stomberg, R. (1997b). Z. Kristallogr. New Cryst. Struct. 212, 311-312.]); Persdotter et al. (1986a[Persdotter, I., Trysberg, L. & Stomberg, R. (1986a). Acta Chem. Scand. Ser. A, 40, 335-343.],b[Persdotter, I., Trysberg, L. & Stomberg, R. (1986b). Acta Chem. Scand. Ser. A, 40, 83-90.],c[Persdotter, I., Trysberg, L. & Stomberg, R. (1986c). Acta Chem. Scand. Ser. A, 40, 1-7.]); Stomberg (1968[Stomberg, R. (1968). Acta. Chem. Scand. 22, 1076-1090.], 1969[Stomberg, R. (1969). Acta. Chem. Scand. 23, 2755-2763.], 1970[Stomberg, R. (1970). Acta. Chem. Scand. 24, 2024-2036.], 1988a[Stomberg, R. (1988a). J. Less-Common Met. 144, 109-116.],b[Stomberg, R. (1988b). J. Crystallogr. Spectrosc. Res. 18, 659-669.], 1992[Stomberg, R. (1992). J. Alloys Compd, 186, 271-278.], 1995[Stomberg, R. (1995). J. Alloys Compd, 229, 227-232.]); Stomberg & Trysberg (1969[Stomberg, R. & Trysberg, L. (1969). Acta. Chem. Scand. 23, 314-317.]); Stomberg & Olson (1996[Stomberg, R. & Olson, S. (1996). J. Alloys Compd, 237, 39-44.]); Trysberg & Stomberg (1968[Trysberg, L. & Stomberg, R. (1968). Acta Chem. Scand. 22, 2027-2028.], 1981[Trysberg, L. & Stomberg, R. (1981). Acta Chem. Scand. Ser A, 35, 823-825.]). The versatile MoO6 octa­hedron building block [see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.]); Chen & Zubieta (1992[Chen, Q. & Zubieta, J. (1992). Coord. Chem. Rev. 114, 107-167.])] results in an exceptionally large family of polyoxidomolybdates, see: Michailovski & Patzke (2006[Michailovski, A. & Patzke, G. R. (2006). Chem. Eur. J. 12, 9122-9134.]). For a review of the structural chemistry of peroxidomolybdates, see: Dickman & Pope (1994[Dickman, M. H. & Pope, M. T. (1994). Chem. Rev. 94, 569-584.]): Sergienko (2008[Sergienko, V. S. C. R. (2008). Crystallogr. Rep. 53, 18-46.]). The tetra­ammonium salt of the centrosymmetric [Mo8O24(O2)2(H2O)2]4− anion has been characterized with moderate precision, see: Trysberg & Stomberg (1981[Trysberg, L. & Stomberg, R. (1981). Acta Chem. Scand. Ser A, 35, 823-825.]): Olson & Stomberg (1997a[Olson, S. & Stomberg, R. (1997a). Z. Kristallogr. 212, 699-703.]). For bonds lengths in polyoxidomolybdates, see: Feng & Mao (2004[Feng, M.-L. & Mao, J.-G. (2004). Eur. J. Inorg. Chem. pp. 3712-3717.]); Long et al. (2003[Long, D.-L., Kogerler, P., Farrugia, L. J. & Cronin, L. (2003). Angew. Chem. Int. Ed. 42, 4180-4183.]); Shi et al. (2006[Shi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct., 784, 244-248.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)4[Mo8O24(O2)2(H2O)2]·4H2O

  • Mr = 1395.78

  • Monoclinic, P 21 /n

  • a = 10.405 (3) Å

  • b = 7.8706 (19) Å

  • c = 18.063 (4) Å

  • β = 96.991 (4)°

  • V = 1468.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 150 K

  • 0.32 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: gaussian (XPREP; Bruker, 1995[Bruker, (1995). SMART, SAINT and XPREP. Bruker Inc., Madison, Wisconsin, USA.]; Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.398, Tmax = 0.773

  • 14005 measured reflections

  • 3542 independent reflections

  • 3434 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.043

  • S = 1.16

  • 3542 reflections

  • 250 parameters

  • 14 restraints

  • Only H-atom coordinates refined

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12A⋯O2i 0.947 (10) 1.802 (15) 2.715 (3) 161 (3)
O12—H12A⋯O1i 0.947 (10) 2.391 (16) 3.299 (3) 161 (3)
O12—H12B⋯O17ii 0.949 (10) 1.658 (12) 2.599 (3) 171 (4)
O16—H16B⋯O4iii 0.94 (3) 2.01 (3) 2.939 (3) 170 (3)
O16—H16A⋯O7 0.943 (10) 2.00 (2) 2.803 (3) 142 (3)
O17—H17A⋯O1 0.94 (3) 1.883 (16) 2.776 (3) 159 (3)
O17—H17B⋯O7iv 0.939 (10) 1.983 (12) 2.909 (3) 169 (3)
N1—H1B⋯O10iv 0.948 (10) 2.09 (3) 2.795 (3) 130 (3)
N1—H1B⋯O10ii 0.948 (10) 2.24 (3) 2.929 (3) 129 (3)
N1—H1A⋯O9ii 0.94 (3) 2.16 (2) 2.992 (3) 146 (3)
N1—H1A⋯O14 0.94 (3) 2.40 (3) 2.985 (3) 120 (3)
N1—H1C⋯O16ii 0.948 (10) 1.96 (2) 2.811 (3) 148 (3)
N1—H1C⋯O6v 0.948 (10) 2.36 (3) 3.038 (3) 128 (3)
N1—H1D⋯O17 0.95 (3) 2.17 (3) 2.859 (3) 129 (3)
N1—H1D⋯O8v 0.95 (3) 2.47 (3) 3.097 (3) 124 (3)
N1—H1D⋯O5 0.95 (3) 2.60 (3) 3.203 (3) 122 (3)
N2—H2A⋯O16 0.946 (10) 2.001 (14) 2.923 (3) 164 (3)
N2—H2B⋯O4 0.945 (10) 1.927 (14) 2.852 (3) 165 (3)
N2—H2C⋯O11vi 0.946 (10) 1.999 (15) 2.912 (3) 162 (3)
N2—H2C⋯O7iii 0.946 (10) 2.65 (3) 3.169 (3) 115 (3)
N2—H2D⋯O3vii 0.94 (3) 2.36 (3) 3.089 (3) 134 (3)
N2—H2D⋯O14ii 0.94 (3) 2.29 (3) 2.961 (3) 128 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) -x+1, -y, -z+1; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) x, y+1, z.

Data collection: SMART (Bruker, 1995[Bruker, (1995). SMART, SAINT and XPREP. Bruker Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1995[Bruker, (1995). SMART, SAINT and XPREP. Bruker Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 1995[Bruker, (1995). SMART, SAINT and XPREP. Bruker Inc., Madison, Wisconsin, USA.]; Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998[Molecular Structure Corporation (1998). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]), Xtal3.7 (Hall et al., 2000[Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000). Editors. Xtal3.7 System. University of Western Australia, Perth, Australia.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Polyoxometalates, which constitute an enormous class of metal-oxygen cluster compounds, have become very widely utilized inorganic components due to the extreme variability of their composition, molecular characteristics and properties - see Pope (1983), Pope & Muller (2001), Hill (1998).

The aqueous chemistry of molybdenum is dominated by the formation of polyoxoanions, the key structural motif being the MoO6 octahedron - see Pope & Muller (1991), Chen & Zubieta (1992). This motif is a versatile building block that gives rise to an exceptionally large family of polyoxomolybdates which range from 3 to 368 metal ions in a single molecule - see Michailovski & Patzke (2006). Baerwald (1885) probably reported the first peroxomolybdate, the species resulting from the dissolution of ammonium paramolybdate in excess H2O2, which was formulated as 14NH3.18MoO3.3H2O2.18H2O, .

The structure of the title complex consists of an octamolybdate unit possessing an inversion centre (Figure 1). In the complex there is a peroxide ligand coordinated to Mo1, one water molecule bound to Mo3, two triply coordinated oxygen atoms, O9, O13, and one quadruply coordinated oxygen atom, O15. The Mo—O bond lengths with the polyvalent O atoms range from 2.0125 (18) to 2.3338 (19) Å. The bridging Mo—O bonds range in length length from 1.8753 (19) to 1.9753 (19) Å. The bond lengths for the terminal Mo=O bonds range from 1.686 (2) to 1.722 (2) Å. These bonds lengths are in good agreement with previously published polyoxomolybdate structures - see Long et al. (2003), Feng & Mao (2004), Shi et al. (2006). However, there are two bond lengths that show significant deviation from the expected: the Mo1—O5 bond length of 2.2836 (19) Å is extremely long for a bridging Mo—O bond while the Mo4—O9 bond length of 1.86089 (19) Å is considerably shorter than expected for a bond involving a triply bridging oxygen.

The packing of the title complex (Figure 2) shows the individual units to be stacked in a cubic close packing arrangement with water and ammonium ions distributed in the channels formed. Hydrogen bonding interactions exist between ammonium ions and the molybdenum cluster: H2B with O4, H1B with O10. In addition there exist hydrogen bonding interactions between the ammonium ions and the O atoms of neighbouring clusters: H2C with 011, H2D with O3, H1A with O9, and H1B with O10. The water molecules also hydrogen bond with the ammonium ions: O16 with H2A, O16 with H1C, and O17 with H1D. There is H-bonding between the H atoms of the water molecules with oxygen atoms of the molybdenum cluster: the strongest being that between O1 and H17A while 07 and H16A has a slightly longer hydrogen bond length. There also exists hydrogen bonding with the protons of the coordinated water molecules (H12A) of one cluster with the O2 atom in a neighbouring cluster while the other proton (H12B) has a strong hydrogen bond to 017. The water molecules also exhibit weak interactions with neighbouring clusters whereby H16A and H16B interact with O3 and H17A and H17B interact with O10.

Related literature top

For work on polyoxometalates, see: Pope (1983); Pope & Muller (2001); Hill (1998). Baerwald (1885) probably reported the first peroxomolybdate. Stomberg et al. have prepared a range of peroxomolybdates and obtained crystal structures of these species, see: Larking & Stomberg (1970, 1972); Olson & Stomberg (1996, 1997a,b); Persdotter et al. (1986a,b,c); Stomberg (1968, 1969, 1970, 1988a,b, 1992, 1995); Stomberg & Trysberg (1969); Stomberg & Olson (1996); Trysberg & Stomberg (1968, 1981). The versatile MoO6 octahedron building block [see: Pope & Muller (1991); Chen & Zubieta (1992)] results in an exceptionally large family of polyoxomolybdates, see: Michailovski & Patzke (2006). For a review of the structural chemistry of peroxomolybdates, see: Dickman & Pope (1994): Sergienko (2008). The tetraammonium salt of the centrosymmetric [Mo8O24(O2)2(H2O)2]4- anion has been characterized with moderate precision, see: Trysberg & Stomberg (1981): Olson & Stomberg (1997a). For bonds lengths in polyoxomolybdates, see: Feng & Mao (2004); Long et al. (2003); Shi et al. (2006).

Experimental top

Ammonium molybdate tetrahydrate (10 g, 8.1 mmol) was dissolved in a solution of hydrogen peroxide (30%, 50 ml) acidified to pH 2 with nitric acid (70%, 5 ml). Slow evaporation of the yellow solution afforded crystals of the title compound (7.45 g, 93%). Crystals suitable for XRD studies were obtained from an aqueous solution of the complex that was kept at 288 K and 80% humidity in order to reduce the rate of evaporation.

Refinement top

O-bound H atoms were located in the difference Fourier map and refined with bond length restraints of 0.95 (1) Å with Uiso(H) 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT and XPREP (Bruker, 1995; Coppens et al., 1965); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.7 (Hall et al., 2000), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at 50% probability level. Water solvent and ammonnium ions omitted for clarity. Symmetry code used for generating equivalent atoms: 1 - x, -y, 1 - z.
[Figure 2] Fig. 2. View along (a) the a axis and (b) the b axis of the crystal lattice of the title complex.
Tetraammonium dihydroxydiperoxooctamolybdate(VI) tetrahydrate top
Crystal data top
(NH4)4[Mo8O24(O2)2(H2O)2]·4H2OF(000) = 1328
Mr = 1395.78Dx = 3.157 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1023 reflections
a = 10.405 (3) Åθ = 2.8–28.3°
b = 7.8706 (19) ŵ = 3.43 mm1
c = 18.063 (4) ÅT = 150 K
β = 96.991 (4)°Blade, yellow
V = 1468.3 (6) Å30.32 × 0.19 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3542 independent reflections
Radiation source: sealed tube3434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: gaussian
(XPREP; Bruker, 1995; Coppens et al., 1965)
h = 1313
Tmin = 0.398, Tmax = 0.773k = 1010
14005 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043Only H-atom coordinates refined
S = 1.16 w = 1/[σ2(Fo2) + (0.016P)2 + 2.2853P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 1.02 e Å3
14 restraintsΔρmin = 0.70 e Å3
Crystal data top
(NH4)4[Mo8O24(O2)2(H2O)2]·4H2OV = 1468.3 (6) Å3
Mr = 1395.78Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.405 (3) ŵ = 3.43 mm1
b = 7.8706 (19) ÅT = 150 K
c = 18.063 (4) Å0.32 × 0.19 × 0.08 mm
β = 96.991 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3542 independent reflections
Absorption correction: gaussian
(XPREP; Bruker, 1995; Coppens et al., 1965)
3434 reflections with I > 2σ(I)
Tmin = 0.398, Tmax = 0.773Rint = 0.032
14005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01914 restraints
wR(F2) = 0.043Only H-atom coordinates refined
S = 1.16Δρmax = 1.02 e Å3
3542 reflectionsΔρmin = 0.70 e Å3
250 parameters
Special details top

Experimental. attached with Exxon Paratone N, to a short length of fibre supported on a thin piece of copper wire inserted in a copper mounting pin. The crystal was quenched in a cold nitrogen gas stream from an Oxford Cryosystems Cryostream.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.578257 (18)0.03860 (2)0.654717 (10)0.00883 (5)
Mo20.267481 (18)0.07806 (2)0.612704 (10)0.00964 (5)
Mo30.153081 (18)0.16838 (2)0.442190 (11)0.00992 (5)
Mo40.473839 (18)0.21902 (2)0.486860 (10)0.00802 (5)
O10.75337 (18)0.1060 (2)0.69344 (10)0.0214 (4)
O20.65823 (18)0.2109 (2)0.72269 (10)0.0216 (4)
O30.54977 (16)0.1215 (2)0.71260 (9)0.0146 (3)
O40.42192 (15)0.1707 (2)0.66940 (9)0.0111 (3)
O50.59440 (16)0.2362 (2)0.56376 (9)0.0117 (3)
O60.25417 (17)0.1077 (2)0.65969 (9)0.0153 (3)
O70.15724 (16)0.2132 (2)0.64528 (10)0.0154 (3)
O80.17259 (16)0.0052 (2)0.51832 (9)0.0123 (3)
O90.32211 (15)0.2731 (2)0.52672 (9)0.0112 (3)
O100.06078 (16)0.3204 (2)0.47923 (10)0.0154 (3)
O110.05378 (17)0.0689 (2)0.37343 (10)0.0178 (4)
O120.20013 (18)0.3722 (2)0.36953 (10)0.0165 (3)
O130.32947 (15)0.0976 (2)0.41274 (9)0.0108 (3)
O140.50583 (16)0.3819 (2)0.42998 (9)0.0133 (3)
O150.55751 (15)0.02784 (19)0.43622 (9)0.0095 (3)
O160.1645 (2)0.5543 (2)0.69018 (11)0.0235 (4)
O170.89009 (18)0.3251 (2)0.61140 (10)0.0181 (4)
N10.7945 (2)0.3830 (3)0.45833 (12)0.0163 (4)
N20.4450 (3)0.5128 (3)0.72139 (13)0.0225 (5)
H12A0.203 (3)0.354 (5)0.3179 (7)0.034*
H12B0.162 (3)0.481 (2)0.372 (2)0.034*
H16B0.128 (3)0.597 (4)0.7317 (13)0.034*
H16A0.135 (3)0.441 (2)0.691 (2)0.034*
H17A0.854 (3)0.267 (4)0.6492 (15)0.034*
H17B0.9770 (14)0.290 (4)0.615 (2)0.034*
H1B0.8775 (17)0.434 (4)0.465 (2)0.034*
H1A0.728 (2)0.462 (4)0.463 (2)0.034*
H1C0.797 (3)0.361 (5)0.4069 (7)0.034*
H1D0.797 (4)0.303 (4)0.4976 (14)0.034*
H2A0.3570 (14)0.546 (5)0.716 (2)0.034*
H2B0.447 (4)0.405 (2)0.6981 (19)0.034*
H2C0.468 (3)0.505 (5)0.7736 (7)0.034*
H2D0.494 (3)0.589 (4)0.6960 (18)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00872 (9)0.00944 (9)0.00819 (9)0.00024 (6)0.00051 (7)0.00073 (6)
Mo20.00888 (9)0.01032 (9)0.00991 (9)0.00013 (7)0.00191 (7)0.00078 (7)
Mo30.00759 (9)0.01116 (9)0.01077 (9)0.00088 (7)0.00020 (7)0.00090 (7)
Mo40.00759 (9)0.00779 (9)0.00865 (9)0.00016 (6)0.00085 (7)0.00025 (6)
O10.0209 (9)0.0228 (9)0.0195 (9)0.0036 (8)0.0015 (7)0.0021 (7)
O20.0199 (9)0.0253 (10)0.0186 (9)0.0046 (8)0.0013 (7)0.0022 (7)
O30.0155 (8)0.0143 (8)0.0137 (8)0.0014 (7)0.0009 (6)0.0009 (6)
O40.0108 (7)0.0116 (7)0.0111 (7)0.0002 (6)0.0016 (6)0.0033 (6)
O50.0115 (8)0.0109 (7)0.0126 (8)0.0006 (6)0.0012 (6)0.0001 (6)
O60.0167 (8)0.0146 (8)0.0148 (8)0.0021 (7)0.0030 (7)0.0002 (6)
O70.0119 (8)0.0166 (8)0.0183 (8)0.0013 (6)0.0045 (7)0.0031 (7)
O80.0120 (7)0.0119 (7)0.0129 (8)0.0017 (6)0.0010 (6)0.0009 (6)
O90.0105 (7)0.0099 (7)0.0132 (8)0.0002 (6)0.0010 (6)0.0007 (6)
O100.0108 (8)0.0181 (8)0.0177 (8)0.0022 (7)0.0029 (6)0.0019 (7)
O110.0145 (8)0.0201 (9)0.0177 (8)0.0001 (7)0.0019 (7)0.0040 (7)
O120.0211 (9)0.0143 (8)0.0144 (8)0.0035 (7)0.0031 (7)0.0034 (7)
O130.0093 (7)0.0116 (7)0.0113 (7)0.0001 (6)0.0001 (6)0.0013 (6)
O140.0144 (8)0.0123 (8)0.0129 (8)0.0003 (6)0.0005 (6)0.0008 (6)
O150.0090 (7)0.0100 (7)0.0093 (7)0.0008 (6)0.0008 (6)0.0012 (6)
O160.0344 (11)0.0182 (9)0.0186 (9)0.0031 (8)0.0056 (8)0.0005 (7)
O170.0171 (9)0.0166 (8)0.0207 (9)0.0037 (7)0.0023 (7)0.0026 (7)
N10.0146 (10)0.0173 (10)0.0166 (10)0.0010 (8)0.0004 (8)0.0002 (8)
N20.0322 (13)0.0187 (11)0.0159 (10)0.0009 (10)0.0001 (9)0.0021 (9)
Geometric parameters (Å, º) top
Mo1—O31.6864 (17)Mo4—O152.0131 (16)
Mo1—O11.9443 (19)Mo4—O132.1148 (16)
Mo1—O21.9468 (19)Mo4—O15i2.4335 (16)
Mo1—O13i1.9599 (16)O1—O21.438 (3)
Mo1—O41.9755 (16)O12—H12A0.947 (10)
Mo1—O15i2.0983 (16)O12—H12B0.949 (10)
Mo1—O52.2836 (17)O13—Mo1i1.9599 (16)
Mo2—O61.7045 (18)O15—Mo1i2.0983 (16)
Mo2—O71.7200 (17)O15—Mo2i2.2768 (16)
Mo2—O41.9397 (16)O15—Mo4i2.4335 (16)
Mo2—O81.9496 (16)O16—H16B0.94 (3)
Mo2—O15i2.2768 (16)O16—H16A0.943 (10)
Mo2—O92.3037 (17)O17—H17A0.94 (3)
Mo3—O111.7062 (18)O17—H17B0.939 (10)
Mo3—O101.7198 (17)N1—H1B0.948 (10)
Mo3—O81.8744 (17)N1—H1A0.94 (3)
Mo3—O132.0493 (17)N1—H1C0.948 (10)
Mo3—O122.1663 (18)N1—H1D0.95 (3)
Mo3—O92.3348 (16)N2—H2A0.946 (10)
Mo4—O141.7007 (17)N2—H2B0.945 (10)
Mo4—O51.7600 (16)N2—H2C0.946 (10)
Mo4—O91.8626 (17)N2—H2D0.94 (3)
O3—Mo1—O1102.03 (8)O12—Mo3—O985.81 (6)
O3—Mo1—O2102.90 (8)O14—Mo4—O5104.22 (8)
O1—Mo1—O243.38 (8)O14—Mo4—O9107.38 (8)
O3—Mo1—O13i96.49 (8)O5—Mo4—O9103.51 (8)
O1—Mo1—O13i82.20 (8)O14—Mo4—O1599.30 (7)
O2—Mo1—O13i124.68 (8)O5—Mo4—O1596.32 (7)
O3—Mo1—O495.75 (8)O9—Mo4—O15141.30 (7)
O1—Mo1—O4123.99 (8)O14—Mo4—O1397.71 (7)
O2—Mo1—O481.05 (8)O5—Mo4—O13156.59 (7)
O13i—Mo1—O4147.69 (7)O9—Mo4—O1377.16 (7)
O3—Mo1—O15i98.44 (7)O15—Mo4—O1371.81 (6)
O1—Mo1—O15i149.52 (7)O14—Mo4—O15i175.07 (7)
O2—Mo1—O15i149.62 (7)O5—Mo4—O15i75.11 (7)
O13i—Mo1—O15i73.21 (7)O9—Mo4—O15i77.47 (6)
O4—Mo1—O15i75.48 (6)O15—Mo4—O15i76.00 (7)
O3—Mo1—O5171.45 (7)O13—Mo4—O15i82.33 (6)
O1—Mo1—O585.71 (7)O2—O1—Mo168.40 (11)
O2—Mo1—O585.18 (7)O1—O2—Mo168.21 (11)
O13i—Mo1—O580.85 (7)Mo2—O4—Mo1111.97 (8)
O4—Mo1—O582.64 (6)Mo4—O5—Mo1114.05 (8)
O15i—Mo1—O573.02 (6)Mo3—O8—Mo2115.98 (8)
O6—Mo2—O7105.20 (9)Mo4—O9—Mo2113.49 (7)
O6—Mo2—O499.89 (8)Mo4—O9—Mo3105.84 (7)
O7—Mo2—O497.53 (8)Mo2—O9—Mo388.71 (6)
O6—Mo2—O896.89 (8)Mo3—O12—H12A121 (2)
O7—Mo2—O8101.14 (8)Mo3—O12—H12B121 (2)
O4—Mo2—O8150.60 (7)H12A—O12—H12B104 (3)
O6—Mo2—O15i89.80 (7)Mo1i—O13—Mo3146.31 (9)
O7—Mo2—O15i163.24 (7)Mo1i—O13—Mo4106.07 (7)
O4—Mo2—O15i72.07 (6)Mo3—O13—Mo4107.61 (7)
O8—Mo2—O15i84.07 (6)Mo4—O15—Mo1i104.76 (7)
O6—Mo2—O9161.61 (7)Mo4—O15—Mo2i149.38 (8)
O7—Mo2—O992.75 (7)Mo1i—O15—Mo2i95.68 (6)
O4—Mo2—O981.31 (6)Mo4—O15—Mo4i104.00 (7)
O8—Mo2—O975.33 (6)Mo1i—O15—Mo4i97.11 (6)
O15i—Mo2—O973.00 (6)Mo2i—O15—Mo4i95.65 (6)
O11—Mo3—O10106.56 (9)H16B—O16—H16A99 (3)
O11—Mo3—O8102.80 (8)H17A—O17—H17B105 (3)
O10—Mo3—O8101.94 (8)H1B—N1—H1A112 (3)
O11—Mo3—O1399.70 (8)H1B—N1—H1C94 (3)
O10—Mo3—O13148.24 (7)H1A—N1—H1C108 (3)
O8—Mo3—O1389.08 (7)H1B—N1—H1D104 (3)
O11—Mo3—O1293.46 (8)H1A—N1—H1D110 (3)
O10—Mo3—O1284.18 (8)H1C—N1—H1D128 (3)
O8—Mo3—O12159.99 (7)H2A—N2—H2B106 (3)
O13—Mo3—O1276.61 (7)H2A—N2—H2C104 (3)
O11—Mo3—O9168.36 (7)H2B—N2—H2C112 (3)
O10—Mo3—O984.95 (7)H2A—N2—H2D111 (3)
O8—Mo3—O975.90 (6)H2B—N2—H2D108 (3)
O13—Mo3—O968.81 (6)H2C—N2—H2D116 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12A···O2ii0.95 (1)1.80 (2)2.715 (3)161 (3)
O12—H12A···O1ii0.95 (1)2.39 (2)3.299 (3)161 (3)
O12—H12B···O17iii0.95 (1)1.66 (1)2.599 (3)171 (4)
O16—H16B···O4iv0.94 (3)2.01 (3)2.939 (3)170 (3)
O16—H16A···O70.94 (1)2.00 (2)2.803 (3)142 (3)
O17—H17A···O10.94 (3)1.88 (2)2.776 (3)159 (3)
O17—H17B···O7v0.94 (1)1.98 (1)2.909 (3)169 (3)
N1—H1B···O10v0.95 (1)2.09 (3)2.795 (3)130 (3)
N1—H1B···O10iii0.95 (1)2.24 (3)2.929 (3)129 (3)
N1—H1A···O9iii0.94 (3)2.16 (2)2.992 (3)146 (3)
N1—H1A···O140.94 (3)2.40 (3)2.985 (3)120 (3)
N1—H1C···O16iii0.95 (1)1.96 (2)2.811 (3)148 (3)
N1—H1C···O6i0.95 (1)2.36 (3)3.038 (3)128 (3)
N1—H1D···O170.95 (3)2.17 (3)2.859 (3)129 (3)
N1—H1D···O8i0.95 (3)2.47 (3)3.097 (3)124 (3)
N1—H1D···O50.95 (3)2.60 (3)3.203 (3)122 (3)
N2—H2A···O160.95 (1)2.00 (1)2.923 (3)164 (3)
N2—H2B···O40.95 (1)1.93 (1)2.852 (3)165 (3)
N2—H2C···O11vi0.95 (1)2.00 (2)2.912 (3)162 (3)
N2—H2C···O7iv0.95 (1)2.65 (3)3.169 (3)115 (3)
N2—H2D···O3vii0.94 (3)2.36 (3)3.089 (3)134 (3)
N2—H2D···O14iii0.94 (3)2.29 (3)2.961 (3)128 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(NH4)4[Mo8O24(O2)2(H2O)2]·4H2O
Mr1395.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.405 (3), 7.8706 (19), 18.063 (4)
β (°) 96.991 (4)
V3)1468.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.32 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionGaussian
(XPREP; Bruker, 1995; Coppens et al., 1965)
Tmin, Tmax0.398, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
14005, 3542, 3434
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.16
No. of reflections3542
No. of parameters250
No. of restraints14
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)1.02, 0.70

Computer programs: SMART (Bruker, 1995), SAINT (Bruker, 1995), SAINT and XPREP (Bruker, 1995; Coppens et al., 1965), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), TEXSAN for Windows (Molecular Structure Corporation, 1998), Xtal3.7 (Hall et al., 2000), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12A···O2i0.947 (10)1.802 (15)2.715 (3)161 (3)
O12—H12A···O1i0.947 (10)2.391 (16)3.299 (3)161 (3)
O12—H12B···O17ii0.949 (10)1.658 (12)2.599 (3)171 (4)
O16—H16B···O4iii0.94 (3)2.01 (3)2.939 (3)170 (3)
O16—H16A···O70.943 (10)2.00 (2)2.803 (3)142 (3)
O17—H17A···O10.94 (3)1.883 (16)2.776 (3)159 (3)
O17—H17B···O7iv0.939 (10)1.983 (12)2.909 (3)169 (3)
N1—H1B···O10iv0.948 (10)2.09 (3)2.795 (3)130 (3)
N1—H1B···O10ii0.948 (10)2.24 (3)2.929 (3)129 (3)
N1—H1A···O9ii0.94 (3)2.16 (2)2.992 (3)146 (3)
N1—H1A···O140.94 (3)2.40 (3)2.985 (3)120 (3)
N1—H1C···O16ii0.948 (10)1.96 (2)2.811 (3)148 (3)
N1—H1C···O6v0.948 (10)2.36 (3)3.038 (3)128 (3)
N1—H1D···O170.95 (3)2.17 (3)2.859 (3)129 (3)
N1—H1D···O8v0.95 (3)2.47 (3)3.097 (3)124 (3)
N1—H1D···O50.95 (3)2.60 (3)3.203 (3)122 (3)
N2—H2A···O160.946 (10)2.001 (14)2.923 (3)164 (3)
N2—H2B···O40.945 (10)1.927 (14)2.852 (3)165 (3)
N2—H2C···O11vi0.946 (10)1.999 (15)2.912 (3)162 (3)
N2—H2C···O7iii0.946 (10)2.65 (3)3.169 (3)115 (3)
N2—H2D···O3vii0.94 (3)2.36 (3)3.089 (3)134 (3)
N2—H2D···O14ii0.94 (3)2.29 (3)2.961 (3)128 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+1, z.
 

Acknowledgements

The authors acknowledge funding from the Australian Research Council.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaerwald, C. (1885). Thesis, University of Berlin, Germany.  Google Scholar
First citationBruker, (1995). SMART, SAINT and XPREP. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q. & Zubieta, J. (1992). Coord. Chem. Rev. 114, 107-167.  CrossRef CAS Web of Science Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDickman, M. H. & Pope, M. T. (1994). Chem. Rev. 94, 569–584.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeng, M.-L. & Mao, J.-G. (2004). Eur. J. Inorg. Chem. pp. 3712–3717.  Google Scholar
First citationHall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000). Editors. Xtal3.7 System. University of Western Australia, Perth, Australia.  Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLarking, I. & Stomberg, R. (1970). Acta Chem. Scand. 24, 2043–2054.  CrossRef CAS Web of Science Google Scholar
First citationLarking, I. & Stomberg, R. (1972). Acta Chem. Scand. 26, 3708–3722.  CrossRef CAS Web of Science Google Scholar
First citationLong, D.-L., Kogerler, P., Farrugia, L. J. & Cronin, L. (2003). Angew. Chem. Int. Ed. 42, 4180-4183.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A. & Patzke, G. R. (2006). Chem. Eur. J. 12, 9122–9134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation (1998). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationOlson, S. & Stomberg, R. (1996). Z. Kristallogr. 211, 895–899.  CrossRef CAS Google Scholar
First citationOlson, S. & Stomberg, R. (1997a). Z. Kristallogr. 212, 699–703.  CrossRef CAS Google Scholar
First citationOlson, S. & Stomberg, R. (1997b). Z. Kristallogr. New Cryst. Struct. 212, 311–312.  CAS Google Scholar
First citationPersdotter, I., Trysberg, L. & Stomberg, R. (1986a). Acta Chem. Scand. Ser. A, 40, 335–343.  CrossRef Web of Science Google Scholar
First citationPersdotter, I., Trysberg, L. & Stomberg, R. (1986b). Acta Chem. Scand. Ser. A, 40, 83–90.  CrossRef Web of Science Google Scholar
First citationPersdotter, I., Trysberg, L. & Stomberg, R. (1986c). Acta Chem. Scand. Ser. A, 40, 1–7.  CrossRef Web of Science Google Scholar
First citationPope, M. T. (1983). In Heteropoly and Isopoly Oxometallates. Berlin: Springer.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.  CrossRef Web of Science Google Scholar
First citationPope, M. T. & Müller, A. (2001). In Polyoxometalate Chemistry From Topology via Self Assembly to Applications. Berlin: Springer-Verlag.  Google Scholar
First citationSergienko, V. S. C. R. (2008). Crystallogr. Rep. 53, 18–46.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct., 784, 244–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationStomberg, R. (1968). Acta. Chem. Scand. 22, 1076–1090.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. (1969). Acta. Chem. Scand. 23, 2755–2763.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. (1970). Acta. Chem. Scand. 24, 2024–2036.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. (1988a). J. Less-Common Met. 144, 109–116.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. (1988b). J. Crystallogr. Spectrosc. Res. 18, 659–669.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. (1992). J. Alloys Compd, 186, 271–278.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. (1995). J. Alloys Compd, 229, 227–232.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. & Olson, S. (1996). J. Alloys Compd, 237, 39–44.  CrossRef CAS Web of Science Google Scholar
First citationStomberg, R. & Trysberg, L. (1969). Acta. Chem. Scand. 23, 314–317.  CrossRef CAS Web of Science Google Scholar
First citationTrysberg, L. & Stomberg, R. (1968). Acta Chem. Scand. 22, 2027–2028.  CrossRef CAS Web of Science Google Scholar
First citationTrysberg, L. & Stomberg, R. (1981). Acta Chem. Scand. Ser A, 35, 823–825.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages i53-i54
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds