Download citation
Download citation
link to html
From a single-crystal study, Nd2Te3 is found to be isostructural with Gd2Te3, crystallizing in the U2S3 structure type. Each of the two non-equivalent Nd atoms is surrounded by seven Te atoms, with the polyhedra best described as a seven-octahedron and a monocapped trigonal prism. All atoms lie on mirror planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012635/br1384sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012635/br1384Isup2.hkl
Contains datablock I

Comment top

Although the structures of NdTe (Iandelli, 1955), NdTe1.8 (Wang et al., 1966), NdTe2 (Yarembash et al., 1965), Nd2Te5 (Pardo & Flahaut, 1967) and NdTe3 (Norling & Steinfink, 1966) are known from single-crystal studies, it is surprising that the work presented here is the first single-crystal study of Nd2Te3. In fact, in the Ln2Te3 family (Ln is a rare earth) there are only two other single-crystal studies, namely Gd2Te3 (Swinnea et al., 1987), with the U2S3 structure type (Zachariasen, 1949), and Er2Te3 (Stöwe, 1998), with the Sc2S3 structure type (Dismukes & White, 1964). In the latter structure, the two independent Er atoms are octahedrally coordinated, sharing edges in the three directions of the orthorhombic structure.

Nd2Te3 crystallizes in the U2S3 structure type. In this structure (Fig. 1), there are two non-equivalent Nd atoms, each located at a site with m symmetry. Atom Nd1 is coordinated by seven Te atoms in a seven-octahedron, with Nd—Te distances in the range 3.1496 (4)–3.2287 (5) Å. These octahedra are interconnected along the b axis by the edge-sharing of two equatorial Te atoms (Te1 and Te3).

Atom Nd2 is coordinated by seven Te atoms in a monocapped trigonal prism, with Nd—Te distances in the range 3.2099 (4)–3.2732 (5) Å. There is a second capping Te2 atom at a distance of 3.6768 (5) Å, which is too long for the first coordination sphere. The height of the prism corresponds to the length of the b axis.

The Nd2Te7 trigonal prisms share triangular faces along the b axis. For comparison, the Nd—Te distances are in the range 3.1247 (5)–3.2980 (5) Å in NdCu0.37Te2 (Huang et al., 2000). In Gd2Te3 (Swinnea et al., 1987), the Gd—Te distances are in the range 3.104 (1)–3.205 (3) Å for Gd1 and 3.169 (2)–3.240 (3) Å for Gd2.

Experimental top

Flat black needles of Nd2Te3 were obtained accidentally, in about 10% yield, in the reaction of Nd (0.0696 g; Alfa, 99.9%), Mn (0.0265 g; Alfa, 99.9%) and Te (0.1539 g; Aldrich, 99.8%) in a fused silica tube, with KBr (200 mg; Alfa, 99%) added to promote crystal growth. The materials were mixed and sealed in the tube, which was then evacuated to 10 -4 Torr (1 Torr = 133.322 Pa). The tube was heated to 1153 K at 0.3 K min-1, kept at 1153 K for 4 d and cooled to 873 K at 0.04 K min-1, and then the furnace was turned off. The reaction mixture was washed free of bromide salts with water and then dried with acetone. Semi-quantitative energy dispersive spectroscopy (EDS) verified the presence of Nd and Te in the ratio 2:3 but provided no evidence for the presence of Mn or K.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of Nd2Te3 along [010].
Dineodymium tritelluride top
Crystal data top
Nd2Te3F(000) = 1104
Mr = 671.28Dx = 7.028 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5792 reflections
a = 12.1856 (5) Åθ = 2.4–29.0°
b = 4.3869 (2) ŵ = 29.56 mm1
c = 11.8687 (5) ÅT = 153 K
V = 634.47 (5) Å3Flat needle, black
Z = 40.19 × 0.04 × 0.02 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
904 independent reflections
Radiation source: fine-focus sealed tube886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
0.3° ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: numerical
(XPREP in SHELXTL; Sheldrick, 2000)
h = 1616
Tmin = 0.118, Tmax = 0.588k = 55
7307 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max < 0.001
S = 1.41Δρmax = 2.47 e Å3
904 reflectionsΔρmin = 2.38 e Å3
32 parametersExtinction correction: SHELXTL (Sheldrick, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0095 (3)
Crystal data top
Nd2Te3V = 634.47 (5) Å3
Mr = 671.28Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.1856 (5) ŵ = 29.56 mm1
b = 4.3869 (2) ÅT = 153 K
c = 11.8687 (5) Å0.19 × 0.04 × 0.02 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
904 independent reflections
Absorption correction: numerical
(XPREP in SHELXTL; Sheldrick, 2000)
886 reflections with I > 2σ(I)
Tmin = 0.118, Tmax = 0.588Rint = 0.037
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02032 parameters
wR(F2) = 0.0460 restraints
S = 1.41Δρmax = 2.47 e Å3
904 reflectionsΔρmin = 2.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.01532 (3)0.25000.31245 (2)0.00639 (11)
Nd20.19600 (2)0.25000.00074 (3)0.00673 (11)
Te10.11962 (3)0.25000.55688 (3)0.00653 (12)
Te20.27404 (3)0.25000.29999 (3)0.00711 (12)
Te30.45621 (3)0.25000.62357 (3)0.00612 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00570 (18)0.00789 (17)0.00559 (17)0.0000.00004 (10)0.000
Nd20.00525 (19)0.00757 (17)0.00737 (18)0.0000.00066 (10)0.000
Te10.0058 (2)0.00784 (19)0.0060 (2)0.0000.00075 (13)0.000
Te20.0053 (2)0.00965 (19)0.0064 (2)0.0000.00095 (13)0.000
Te30.0057 (2)0.00745 (19)0.0052 (2)0.0000.00039 (12)0.000
Geometric parameters (Å, º) top
Nd1—Te1i3.1496 (3)Nd2—Te23.6769 (5)
Nd1—Te1ii3.1496 (3)Te1—Nd1ii3.1496 (3)
Nd1—Te3iii3.1555 (3)Te1—Nd1i3.1496 (3)
Nd1—Te3iv3.1555 (3)Te1—Nd2vi3.2099 (4)
Nd1—Te23.1562 (5)Te1—Nd2vii3.2099 (4)
Nd1—Te13.1672 (5)Te2—Nd1viii3.2288 (5)
Nd1—Te2v3.2288 (5)Te2—Nd2vi3.2590 (4)
Nd2—Te1iv3.2099 (4)Te2—Nd2vii3.2590 (4)
Nd2—Te1iii3.2099 (4)Te3—Nd1vi3.1555 (3)
Nd2—Te3iii3.2213 (4)Te3—Nd1vii3.1555 (3)
Nd2—Te3iv3.2213 (4)Te3—Nd2vii3.2213 (4)
Nd2—Te2iii3.2590 (4)Te3—Nd2vi3.2213 (4)
Nd2—Te2iv3.2590 (4)Te3—Nd2viii3.2733 (5)
Nd2—Te3v3.2733 (5)
Te1i—Nd1—Te1ii88.280 (12)Te2iii—Nd2—Te3v76.731 (10)
Te1i—Nd1—Te3iii85.591 (8)Te2iv—Nd2—Te3v76.731 (10)
Te1ii—Nd1—Te3iii153.038 (15)Te1iv—Nd2—Te267.569 (9)
Te1i—Nd1—Te3iv153.038 (15)Te1iii—Nd2—Te267.569 (9)
Te1ii—Nd1—Te3iv85.591 (8)Te3iii—Nd2—Te273.248 (9)
Te3iii—Nd1—Te3iv88.072 (12)Te3iv—Nd2—Te273.248 (9)
Te1i—Nd1—Te2122.995 (9)Te2iii—Nd2—Te2132.627 (6)
Te1ii—Nd1—Te2122.995 (9)Te2iv—Nd2—Te2132.627 (6)
Te3iii—Nd1—Te281.772 (11)Te3v—Nd2—Te2131.781 (12)
Te3iv—Nd1—Te281.772 (11)Nd1ii—Te1—Nd1i88.280 (12)
Te1i—Nd1—Te176.025 (10)Nd1ii—Te1—Nd1103.975 (10)
Te1ii—Nd1—Te176.025 (10)Nd1i—Te1—Nd1103.975 (10)
Te3iii—Nd1—Te1127.344 (9)Nd1ii—Te1—Nd2vi89.527 (7)
Te3iv—Nd1—Te1127.344 (9)Nd1i—Te1—Nd2vi160.654 (14)
Te2—Nd1—Te169.026 (11)Nd1—Te1—Nd2vi95.208 (11)
Te1i—Nd1—Te2v74.225 (10)Nd1ii—Te1—Nd2vii160.654 (14)
Te1ii—Nd1—Te2v74.225 (10)Nd1i—Te1—Nd2vii89.527 (7)
Te3iii—Nd1—Te2v78.841 (10)Nd1—Te1—Nd2vii95.208 (11)
Te3iv—Nd1—Te2v78.841 (10)Nd2vi—Te1—Nd2vii86.211 (12)
Te2—Nd1—Te2v152.899 (11)Nd1—Te2—Nd1viii158.271 (13)
Te1—Nd1—Te2v138.075 (14)Nd1—Te2—Nd2vi94.453 (11)
Te1iv—Nd2—Te1iii86.211 (12)Nd1viii—Te2—Nd2vi101.548 (11)
Te1iv—Nd2—Te3iii140.750 (13)Nd1—Te2—Nd2vii94.453 (11)
Te1iii—Nd2—Te3iii81.012 (8)Nd1viii—Te2—Nd2vii101.548 (11)
Te1iv—Nd2—Te3iv81.012 (8)Nd2vi—Te2—Nd2vii84.604 (12)
Te1iii—Nd2—Te3iv140.750 (13)Nd1—Te2—Nd277.696 (10)
Te3iii—Nd2—Te3iv85.832 (12)Nd1viii—Te2—Nd280.576 (11)
Te1iv—Nd2—Te2iii122.227 (13)Nd2vi—Te2—Nd2137.322 (6)
Te1iii—Nd2—Te2iii67.259 (9)Nd2vii—Te2—Nd2137.322 (6)
Te3iii—Nd2—Te2iii86.392 (8)Nd1vi—Te3—Nd1vii88.072 (12)
Te3iv—Nd2—Te2iii148.610 (14)Nd1vi—Te3—Nd2vii149.109 (15)
Te1iv—Nd2—Te2iv67.259 (9)Nd1vii—Te3—Nd2vii84.923 (7)
Te1iii—Nd2—Te2iv122.227 (13)Nd1vi—Te3—Nd2vi84.923 (7)
Te3iii—Nd2—Te2iv148.610 (14)Nd1vii—Te3—Nd2vi149.109 (15)
Te3iv—Nd2—Te2iv86.392 (8)Nd2vii—Te3—Nd2vi85.832 (12)
Te2iii—Nd2—Te2iv84.604 (12)Nd1vi—Te3—Nd2viii102.831 (11)
Te1iv—Nd2—Te3v135.922 (7)Nd1vii—Te3—Nd2viii102.831 (11)
Te1iii—Nd2—Te3v135.922 (7)Nd2vii—Te3—Nd2viii108.059 (10)
Te3iii—Nd2—Te3v71.941 (10)Nd2vi—Te3—Nd2viii108.059 (10)
Te3iv—Nd2—Te3v71.941 (10)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1, z1/2; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaNd2Te3
Mr671.28
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)153
a, b, c (Å)12.1856 (5), 4.3869 (2), 11.8687 (5)
V3)634.47 (5)
Z4
Radiation typeMo Kα
µ (mm1)29.56
Crystal size (mm)0.19 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionNumerical
(XPREP in SHELXTL; Sheldrick, 2000)
Tmin, Tmax0.118, 0.588
No. of measured, independent and
observed [I > 2σ(I)] reflections
7307, 904, 886
Rint0.037
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.046, 1.41
No. of reflections904
No. of parameters32
Δρmax, Δρmin (e Å3)2.47, 2.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Sheldrick, 2000), XP in SHELXTL.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds