Download citation
Download citation
link to html
The title compounds, potassium pentamolybdenum oxide, KMo5O13, and potassium niobate antimonate or potassium niobium antimony oxide (1/1.76/3.24), KNb1.76Sb3.24O13, were synthesized by solid-state reactions and are isomorphous in space group Cmcm. The structure of the Mo complex has three unique Mo atoms and consists of MoO6 octahedra sharing edges to form Mo2O6 pairs and Mo3O9 triplets, which, in turn, form layers by sharing corners. These layers are linked together in the [100] direction, yielding a three-dimensional network similar to that of KSb5O13. This framework delimits interconnected tunnels, running approximately along the [110] and [\overline 110] directions, in which K+ ions are located. In the isomorphous KNb1.76Sb3.24O13 structure, one of the Mo sites in KMo5O13 is replaced by Sb and the other two Mo sites have been replaced by Nb/Sb.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007886/br1369sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007886/br1369Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007886/br1369IIsup3.hkl
Contains datablock II

Comment top

KMo5O13 crystallizes in the orthorhombic space group Cmcm and is isotypic with KSb5O13 (Bodenstein et al., 1983). The structure possesses a three-dimensional network, which can be described by the succession of MoO6 octahedra sharing edges to form [Mo2Mo1Mo2]O9 triplets. These triplets are associated by sharing O1 corners, yielding zigzag chains running along the [001] direction. These chains are, in turn, associated by sharing axial oxygen corners, with pairs of Mo32O6 octahedra sharing edges to form layers parallel to the (100) plane (Fig. 1).

In the [100] direction, these layers are associated with an ABA ordering. Each Mo32O6 pair of one layer links two [Mo2Mo1Mo2]O9 triplets of the two neighbouring layers by sharing each of its three equatorial oxygen corners with the axial corners of each triplet.

This arrangement of octahedra generates interconnected tunnels, parallel to the [110] and [110] directions, in which the K+ ions are located (Fig. 2).

In the structure of KMo5O13, all Mo—O bond distances are similar to those customarily encountered with MoV and O. However, we note the existence of longer bond distances for Mo1—O4, Mo2—O4 and Mo3—O4 (Table 1) that can be explained by the sharing of atom O4 with the three Mo atoms (Mo1, Mo2 and Mo3). This makes the interaction between the metal atoms and the O atom weaker. The K+ ions are coordinated by seven O atoms.

The crystal structure of KNb1.76Sb3.24O13 is isomorphous with that of KMo5O13. The characteristic feature of this structure is the double occupancy of sites 2 and 3 by Sb and Nb atoms; the occupancies of the Sb and Nb atoms in both sites are 0.56 and 0.44, respectively.

For both compounds, atom O2 lies on a general position, atom O3 lies on a twofold axis, K and O1 have mm symmetry, Mo1 and Sb1 have 2/m symmetry and all other atoms have m symmetry.

Experimental top

Single crystals of KMo5O13 were prepared from a mixture of K2CO3, (NH4)6Mo7O24·4H2O and H3BO3 in a molar ratio of 5:1:5. The mixture was ground and then heated in a platinium crucible at 1073 K for 40 h. The mixture was then cooled to room temperature at a rate of 0.1 K min-1. Colourless plates were extracted from the boron glass using hot water. Qualitative analysis of the sample by electron microscope probe revealed that it contained K and Mo.

Transparent and colourless single crystals of KNb1.76Sb3.24O13 were prepared from a mixture of K2CO3, Sb2O3 and Nb2O5 in a molar ratio of 5:2:2. The powder was ground and homogenized with boric acid (H3BO3) as a flux, then heated in a porcelain crucible in air to 1273 K. This temperature was held for 20 h, then the mixture was cooled to 773 K at a rate of 6 K h-1 and maintained at that temperature for 2 h, before being cooled to room temperature at a rate of 30 K h-1. Single crystals were extracted from the boron glass using hot water. Qualitative analysis of the single crystals by electron microscope probe revealed that they contained K, Nb and Sb.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992). Cell refinement: CAD-4 EXPRESS for (I); CAD-4 EXPRESS and WinGX (Farrugia, 1999) for (II). For both compounds, data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A layer of the KNb1.76Sb3.24O13 structure (similar to the KMo5O13 structure), viewed along the [100] direction. The Sb1O6 octahedra (Mo1O6 octahedra in the KMo5O13 structure) are hatched, and the (Nb2,Sb2)O6 (Mo2 in KMo5O13) and (Nb3,Sb3)O6 (Mo3 in KMo5O13) octahedra are grey. Open circles denote K atoms.
[Figure 2] Fig. 2. A projection of the structures of KNb1.76Sb3.24O13 (similar to the KMo5O13 structure) along the [110] direction, showing the tunnels. The shading key is the same as for Fig. 1.
(I) Potassium closo-13-oxopentamolybdate top
Crystal data top
KMo5O13F(000) = 1331
Mr = 726.79Dx = 4.847 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 24 reflections
a = 6.6027 (10) Åθ = 9.1–14.0°
b = 8.9552 (10) ŵ = 6.62 mm1
c = 16.844 (2) ÅT = 293 K
V = 996.0 (2) Å3Plate, colourless
Z = 40.09 × 0.07 × 0.02 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
740 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 30.0°, θmin = 2.4°
ω/2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.601, Tmax = 0.910l = 023
2790 measured reflections2 standard reflections every 120 min
812 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0499P)2 + 28.8946P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.22Δρmax = 1.94 e Å3
812 reflectionsΔρmin = 2.48 e Å3
58 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0062 (4)
Crystal data top
KMo5O13V = 996.0 (2) Å3
Mr = 726.79Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 6.6027 (10) ŵ = 6.62 mm1
b = 8.9552 (10) ÅT = 293 K
c = 16.844 (2) Å0.09 × 0.07 × 0.02 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
740 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.008
Tmin = 0.601, Tmax = 0.9102 standard reflections every 120 min
2790 measured reflections intensity decay: 0.6%
812 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0499P)2 + 28.8946P]
where P = (Fo2 + 2Fc2)/3
S = 1.22Δρmax = 1.94 e Å3
812 reflectionsΔρmin = 2.48 e Å3
58 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.00000.00000.50000.0048 (2)
Mo20.00000.23165 (7)0.36166 (4)0.0048 (2)
Mo30.00000.38575 (7)0.57726 (4)0.0049 (2)
K0.00000.1278 (4)0.75000.0309 (8)
O10.00000.1878 (13)0.25000.023 (2)
O20.2035 (9)0.2732 (6)0.6322 (3)0.0223 (11)
O30.3110 (12)0.00000.50000.0195 (14)
O40.00000.2256 (8)0.4907 (5)0.0202 (15)
O50.00000.5535 (8)0.6499 (5)0.0213 (15)
O60.00000.0147 (8)0.3869 (4)0.0205 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0062 (4)0.0046 (4)0.0035 (4)0.0000.0000.0007 (3)
Mo20.0064 (3)0.0041 (3)0.0038 (3)0.0000.0000.0002 (2)
Mo30.0064 (4)0.0042 (3)0.0042 (3)0.0000.0000.0003 (2)
K0.047 (2)0.0259 (17)0.0192 (16)0.0000.0000.000
O10.030 (6)0.028 (6)0.012 (4)0.0000.0000.000
O20.025 (3)0.022 (2)0.020 (2)0.001 (2)0.004 (2)0.0027 (19)
O30.023 (3)0.020 (3)0.015 (3)0.0000.0000.003 (3)
O40.026 (4)0.017 (3)0.018 (4)0.0000.0000.001 (3)
O50.030 (4)0.014 (3)0.020 (3)0.0000.0000.001 (3)
O60.032 (4)0.016 (3)0.013 (3)0.0000.0000.002 (3)
Geometric parameters (Å, º) top
Mo1—O6i1.909 (7)Mo2—O42.174 (8)
Mo1—O4i2.026 (7)Mo3—O21.917 (5)
Mo1—O3i2.054 (8)Mo3—O51.937 (8)
Mo1—Mo2i3.1198 (7)Mo3—O42.046 (8)
Mo2—O11.921 (3)Mo3—O3iv2.073 (5)
Mo2—O5ii1.934 (7)K—O6v2.636 (7)
Mo2—O2iii1.961 (6)K—O2vi2.727 (6)
Mo2—O61.989 (7)K—O1i2.826 (12)
O2—Mo3—O2vii89.0 (3)O4i—Mo1—O4180.0 (4)
O2—Mo3—O595.9 (2)O6i—Mo1—O3i90.000 (1)
O2vii—Mo3—O595.9 (2)O6—Mo1—O3i90.000 (1)
O2—Mo3—O488.6 (2)O4i—Mo1—O3i90.000 (1)
O2vii—Mo3—O488.6 (2)O4—Mo1—O3i90.000 (2)
O5—Mo3—O4173.7 (3)O6i—Mo1—O390.000 (1)
O2—Mo3—O3iv98.1 (3)O6—Mo1—O390.000 (1)
O2vii—Mo3—O3iv169.8 (2)O4i—Mo1—O390.000 (2)
O5—Mo3—O3iv90.79 (18)O4—Mo1—O390.000 (1)
O4—Mo3—O3iv84.17 (17)O3i—Mo1—O3180.000 (1)
O2—Mo3—O3viii169.8 (2)O1—Mo2—O5ii96.0 (4)
O2vii—Mo3—O3viii98.1 (3)O1—Mo2—O2iii92.70 (15)
O5—Mo3—O3viii90.79 (18)O5ii—Mo2—O2iii91.57 (16)
O4—Mo3—O3viii84.17 (17)O1—Mo2—O2ix92.70 (15)
O3iv—Mo3—O3viii74.0 (4)O5ii—Mo2—O2ix91.57 (16)
O2—Mo3—K45.19 (17)O2iii—Mo2—O2ix173.4 (3)
O2vii—Mo3—K45.19 (17)O1—Mo2—O690.6 (4)
O5—Mo3—K89.3 (2)O5ii—Mo2—O6173.4 (3)
O4—Mo3—K97.0 (2)O2iii—Mo2—O688.11 (16)
O3iv—Mo3—K143.00 (18)O2ix—Mo2—O688.11 (16)
O3viii—Mo3—K143.00 (18)O1—Mo2—O4166.8 (4)
O6i—Mo1—O6180.000 (1)O5ii—Mo2—O497.2 (3)
O6i—Mo1—O4i81.6 (3)O2iii—Mo2—O486.94 (15)
O6—Mo1—O4i98.4 (3)O2ix—Mo2—O486.94 (15)
O6i—Mo1—O498.4 (3)O6—Mo2—O476.2 (3)
O6—Mo1—O481.6 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x, y, z+1/2; (vi) x, y, z+3/2; (vii) x, y, z; (viii) x1/2, y+1/2, z+1; (ix) x1/2, y+1/2, z+1.
(II) Potassium niobium antimony oxide (1/1.76/3.24) top
Crystal data top
KNb1.76Sb3.24O13F(000) = 1441.5
Mr = 804.67Dx = 5.186 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2c 2Cell parameters from 25 reflections
a = 6.697 (1) Åθ = 10.0–14.5°
b = 9.027 (1) ŵ = 10.74 mm1
c = 17.047 (2) ÅT = 293 K
V = 1030.6 (2) Å3Parallelepiped, colourless
Z = 40.20 × 0.05 × 0.04 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
743 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 29.9°, θmin = 2.4°
Graphite monochromatorh = 90
ω/2θ scansk = 012
Absorption correction: ψ scan
(North et al., 1968)
l = 230
Tmin = 0.567, Tmax = 0.6432 standard reflections every 120 min
832 measured reflections intensity decay: 0.5%
832 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0389P)2 + 3.9495P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.18Δρmax = 1.34 e Å3
832 reflectionsΔρmin = 1.53 e Å3
66 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00129 (12)
Crystal data top
KNb1.76Sb3.24O13V = 1030.6 (2) Å3
Mr = 804.67Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 6.697 (1) ŵ = 10.74 mm1
b = 9.027 (1) ÅT = 293 K
c = 17.047 (2) Å0.20 × 0.05 × 0.04 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
832 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
743 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.6432 standard reflections every 120 min
832 measured reflections intensity decay: 0.5%
Refinement top
R[F2 > 2σ(F2)] = 0.02366 parameters
wR(F2) = 0.0722 restraints
S = 1.18Δρmax = 1.34 e Å3
832 reflectionsΔρmin = 1.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.00000.00000.50000.01077 (19)
Nb20.00000.230 (4)0.359 (4)0.0131 (12)0.44 (4)
Sb20.00000.227 (2)0.364 (2)0.0131 (12)0.56 (3)
Nb30.00000.3735 (14)0.5748 (12)0.0102 (6)0.44 (3)
Sb30.00000.3911 (11)0.5762 (7)0.0102 (6)0.56 (3)
K0.00000.1318 (2)0.75000.0264 (5)
O10.00000.1933 (6)0.25000.0120 (11)
O20.2051 (4)0.2846 (3)0.63116 (15)0.0112 (5)
O30.3078 (6)0.00000.50000.0096 (7)
O40.00000.2240 (4)0.4895 (2)0.0099 (8)
O50.00000.5611 (4)0.6419 (2)0.0119 (8)
O60.00000.0126 (4)0.3873 (2)0.0082 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0109 (3)0.0106 (3)0.0108 (3)0.0000.0000.00117 (16)
Nb20.0155 (2)0.0081 (7)0.016 (4)0.0000.0000.0012 (12)
Sb20.0155 (2)0.0081 (7)0.016 (4)0.0000.0000.0012 (12)
Nb30.0107 (3)0.0040 (18)0.0158 (4)0.0000.0000.0022 (12)
Sb30.0107 (3)0.0040 (18)0.0158 (4)0.0000.0000.0022 (12)
K0.0516 (14)0.0160 (8)0.0115 (8)0.0000.0000.000
O10.014 (3)0.010 (2)0.013 (3)0.0000.0000.000
O20.0089 (12)0.0106 (11)0.0140 (12)0.0002 (10)0.0004 (10)0.0010 (9)
O30.0071 (17)0.0101 (15)0.0115 (17)0.0000.0000.0027 (12)
O40.0137 (19)0.0089 (18)0.0071 (16)0.0000.0000.0002 (13)
O50.020 (2)0.0033 (16)0.0126 (17)0.0000.0000.0003 (13)
O60.0135 (18)0.0051 (16)0.0062 (16)0.0000.0000.0016 (12)
Geometric parameters (Å, º) top
Sb1—O61.924 (4)Sb2—O42.14 (3)
Sb1—O4i2.030 (4)Nb3—O2iv1.858 (12)
Sb1—O32.061 (4)Nb3—O41.984 (17)
Nb2—O11.89 (6)Nb3—O52.044 (15)
Nb2—O5ii1.89 (4)Nb3—O3v2.142 (14)
Nb2—O2iii1.987 (6)Sb3—O51.900 (11)
Nb2—O62.02 (4)Sb3—O2iv1.921 (8)
Nb2—O42.22 (6)Sb3—O3v2.076 (9)
Sb2—O5ii1.92 (2)Sb3—O42.112 (11)
Sb2—O11.96 (3)K—O6i2.679 (4)
Sb2—O61.98 (2)K—O2vi2.810 (3)
Sb2—O2iii1.980 (3)K—O1i2.935 (6)
O6—Sb1—O6i180.0O5ii—Nb2—O2viii93.8 (11)
O6—Sb1—O4i98.46 (15)O2iii—Nb2—O2viii168 (3)
O6i—Sb1—O4i81.54 (15)O1—Nb2—O694 (2)
O6—Sb1—O481.54 (15)O5ii—Nb2—O6167 (4)
O6i—Sb1—O498.46 (15)O2iii—Nb2—O685.2 (11)
O4i—Sb1—O4180.0O2viii—Nb2—O685.2 (11)
O6—Sb1—O390.000 (1)O1—Nb2—O4169 (2)
O6i—Sb1—O390.000 (1)O5ii—Nb2—O492 (2)
O4i—Sb1—O390.000 (1)O2iii—Nb2—O485.1 (17)
O4—Sb1—O390.0O2viii—Nb2—O485.1 (17)
O6—Sb1—O3i90.000 (1)O6—Nb2—O474.8 (17)
O6i—Sb1—O3i90.000 (1)O5ii—Sb2—O196.0 (13)
O4i—Sb1—O3i90.0O5ii—Sb2—O6171 (2)
O4—Sb1—O3i90.000 (1)O1—Sb2—O692.8 (12)
O3—Sb1—O3i180.0O5ii—Sb2—O2iii93.2 (6)
O2iv—Nb3—O494.9 (5)O1—Sb2—O2iii92.0 (10)
O2—Nb3—O494.9 (5)O6—Sb2—O2iii86.5 (6)
O2iv—Nb3—O593.9 (7)O5ii—Sb2—O2viii93.2 (6)
O2—Nb3—O593.9 (7)O1—Sb2—O2viii92.0 (10)
O4—Nb3—O5166.9 (10)O6—Sb2—O2viii86.5 (6)
O2iv—Nb3—O3v95.38 (17)O2iii—Sb2—O2viii172.1 (15)
O2—Nb3—O3v169.2 (7)O5ii—Sb2—O493.6 (13)
O4—Nb3—O3v85.8 (7)O1—Sb2—O4170.4 (12)
O5—Nb3—O3v83.8 (4)O6—Sb2—O477.6 (10)
O2iv—Nb3—O3vii169.2 (7)O2iii—Sb2—O487.5 (10)
O2—Nb3—O3vii95.38 (17)O2viii—Sb2—O487.5 (10)
O4—Nb3—O3vii85.8 (7)O6i—K—O6ix121.80 (17)
O5—Nb3—O3vii83.8 (4)O6i—K—O2vi150.33 (6)
O3v—Nb3—O3vii73.9 (6)O6ix—K—O2vi66.97 (8)
O5—Sb3—O2iv96.7 (4)O6i—K—O2x150.33 (6)
O5—Sb3—O296.7 (4)O6ix—K—O2x66.97 (8)
O2iv—Sb3—O291.3 (5)O2vi—K—O2x58.52 (11)
O5—Sb3—O3v89.2 (4)O6i—K—O2iv66.97 (8)
O2iv—Sb3—O3v95.67 (14)O6ix—K—O2iv150.33 (6)
O2—Sb3—O3v170.3 (5)O2vi—K—O2iv121.18 (13)
O5—Sb3—O3vii89.2 (4)O2x—K—O2iv92.28 (11)
O2iv—Sb3—O3vii170.3 (5)O6i—K—O266.97 (8)
O2—Sb3—O3vii95.67 (14)O6ix—K—O2150.33 (6)
O3v—Sb3—O3vii76.6 (4)O2vi—K—O292.28 (12)
O5—Sb3—O4171.7 (6)O2x—K—O2121.18 (13)
O2iv—Sb3—O489.1 (4)O2iv—K—O258.52 (11)
O2—Sb3—O489.1 (4)O6i—K—O1i60.90 (9)
O3v—Sb3—O484.3 (4)O6ix—K—O1i60.90 (9)
O3vii—Sb3—O484.3 (4)O2vi—K—O1i119.41 (6)
O1—Nb2—O5ii100 (2)O2x—K—O1i119.41 (7)
O1—Nb2—O2iii94.1 (17)O2iv—K—O1i119.41 (7)
O5ii—Nb2—O2iii93.8 (11)O2—K—O1i119.41 (6)
O1—Nb2—O2viii94.1 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z+1; (iv) x, y, z; (v) x1/2, y+1/2, z+1; (vi) x, y, z+3/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1; (ix) x, y, z+1/2; (x) x, y, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaKMo5O13KNb1.76Sb3.24O13
Mr726.79804.67
Crystal system, space groupOrthorhombic, CmcmOrthorhombic, Cmcm
Temperature (K)293293
a, b, c (Å)6.6027 (10), 8.9552 (10), 16.844 (2)6.697 (1), 9.027 (1), 17.047 (2)
V3)996.0 (2)1030.6 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)6.6210.74
Crystal size (mm)0.09 × 0.07 × 0.020.20 × 0.05 × 0.04
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.601, 0.9100.567, 0.643
No. of measured, independent and
observed [I > 2σ(I)] reflections
2790, 812, 740 832, 832, 743
Rint0.008?
(sin θ/λ)max1)0.7030.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.22 0.023, 0.072, 1.18
No. of reflections812832
No. of parameters5866
No. of restraints02
w = 1/[σ2(Fo2) + (0.0499P)2 + 28.8946P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0389P)2 + 3.9495P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.94, 2.481.34, 1.53

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), CAD-4 EXPRESS and WinGX (Farrugia, 1999), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), SHELXL97.

Selected bond lengths (Å) for (I) top
Mo1—O6i1.909 (7)Mo2—O42.174 (8)
Mo1—O4i2.026 (7)Mo3—O21.917 (5)
Mo1—O3i2.054 (8)Mo3—O51.937 (8)
Mo1—Mo2i3.1198 (7)Mo3—O42.046 (8)
Mo2—O11.921 (3)Mo3—O3iv2.073 (5)
Mo2—O5ii1.934 (7)K—O6v2.636 (7)
Mo2—O2iii1.961 (6)K—O2vi2.727 (6)
Mo2—O61.989 (7)K—O1i2.826 (12)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x, y, z+1/2; (vi) x, y, z+3/2.
Selected bond lengths (Å) for (II) top
Sb1—O61.924 (4)Sb2—O42.14 (3)
Sb1—O4i2.030 (4)Nb3—O2iv1.858 (12)
Sb1—O32.061 (4)Nb3—O41.984 (17)
Nb2—O11.89 (6)Nb3—O52.044 (15)
Nb2—O5ii1.89 (4)Nb3—O3v2.142 (14)
Nb2—O2iii1.987 (6)Sb3—O51.900 (11)
Nb2—O62.02 (4)Sb3—O2iv1.921 (8)
Nb2—O42.22 (6)Sb3—O3v2.076 (9)
Sb2—O5ii1.92 (2)Sb3—O42.112 (11)
Sb2—O11.96 (3)K—O6i2.679 (4)
Sb2—O61.98 (2)K—O2vi2.810 (3)
Sb2—O2iii1.980 (3)K—O1i2.935 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z+1; (iv) x, y, z; (v) x1/2, y+1/2, z+1; (vi) x, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds